# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import torch from models.vc.Noro.noro_trainer import NoroTrainer from utils.util import load_config def build_trainer(args, cfg): supported_trainer = { "VC": NoroTrainer, } trainer_class = supported_trainer[cfg.model_type] trainer = trainer_class(args, cfg) return trainer def cuda_relevant(deterministic=False): torch.cuda.empty_cache() # TF32 on Ampere and above torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.enabled = True torch.backends.cudnn.allow_tf32 = True # Deterministic torch.backends.cudnn.deterministic = deterministic torch.backends.cudnn.benchmark = not deterministic torch.use_deterministic_algorithms(deterministic) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--config", default="config.json", help="json files for configurations.", required=True, ) parser.add_argument( "--exp_name", type=str, default="exp_name", help="A specific name to note the experiment", required=True, ) parser.add_argument( "--resume", action="store_true", help="The model name to restore" ) parser.add_argument( "--log_level", default="warning", help="logging level (debug, info, warning)" ) parser.add_argument( "--resume_type", type=str, default="resume", help="Resume training or finetuning.", ) parser.add_argument( "--checkpoint_path", type=str, default=None, help="Checkpoint for resume training or finetuning.", ) args = parser.parse_args() cfg = load_config(args.config) print("experiment name: ", args.exp_name) # # CUDA settings cuda_relevant() # Build trainer print(f"Building {cfg.model_type} trainer") trainer = build_trainer(args, cfg) torch.set_num_threads(1) torch.set_num_interop_threads(1) print(f"Start training {cfg.model_type} model") trainer.train_loop() if __name__ == "__main__": main()