Spaces:
Running
on
L4
Running
on
L4
import os | |
# Set the cache directory to persistent storage | |
os.environ["HF_HOME"] = "/data/.cache/huggingface" | |
import streamlit as st | |
from utils.help import get_disclaimer | |
from utils.format import sec_to_time, fix_latex, get_youtube_embed | |
from utils.rag_utils import load_youtube_data, load_book_data, load_summary, fixed_knn_retrieval, get_random_question | |
from utils.system_prompts import get_expert_system_prompt, get_synthesis_system_prompt | |
from utils.openai_utils import embed_question_openai, openai_domain_specific_answer_generation, openai_context_integration | |
from utils.llama_utils import get_bnb_config, load_base_model, load_fine_tuned_model, generate_response | |
st.set_page_config(page_title="AI University") | |
st.markdown(""" | |
<style> | |
.video-wrapper { | |
position: relative; | |
padding-bottom: 56.25%; | |
height: 0; | |
} | |
.video-wrapper iframe { | |
position: absolute; | |
top: 0; | |
left: 0; | |
width: 100%; | |
height: 100%; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# --------------------------------------- | |
# paths | |
# --------------------------------------- | |
base_path = "data/" | |
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct" | |
base_model_path_3B = "meta-llama/Llama-3.2-3B-Instruct" | |
adapter_path = "./LLaMA-TOMMI-1.0/" | |
st.title(":red[AI University] :gray[/] FEM") | |
# st.markdown("### Finite Element Method") | |
st.markdown("Welcome to :red[AI University]—an AI-powered platform designed to address scientific course queries, dynamically adapting to instructors' teaching styles and students' learning needs. This prototype demonstrates the capabilities of the AI University platform by providing expert answers to queries related to a graduate-level :red[Finite Element Method (FEM)] course") | |
st.markdown(" ") | |
st.markdown(" ") | |
# st.divider() | |
# Sidebar for settings | |
with st.sidebar: | |
st.header("Settings") | |
# with st.container(border=True): | |
# Embedding model | |
model_name = st.selectbox("Choose content embedding model", [ | |
"text-embedding-3-small", | |
# "text-embedding-3-large", | |
# "all-MiniLM-L6-v2", | |
# "all-mpnet-base-v2" | |
], | |
# help=""" | |
# Select the embedding model to use for encoding the retrieved text data. | |
# Options include OpenAI's `text-embedding-3` models and two widely | |
# used SentenceTransformers models. | |
# """ | |
) | |
with st.container(border=True): | |
st.write('**Video lectures**') | |
yt_token_choice = st.select_slider("Token per content", [256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="yt_token_len") | |
yt_chunk_tokens = yt_token_choice | |
yt_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[yt_chunk_tokens] | |
top_k_YT = st.slider("Number of relevant content pieces to retrieve", 0, yt_max_content, 4, key="yt_token_num") | |
yt_overlap_tokens = yt_chunk_tokens // 4 | |
# st.divider() | |
with st.container(border=True): | |
st.write('**Textbook**') | |
show_textbook = False | |
# show_textbook = st.toggle("Show Textbook Content", value=False) | |
latex_token_choice = st.select_slider("Token per content", [128, 256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="latex_token_len") | |
latex_chunk_tokens = latex_token_choice | |
latex_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[latex_chunk_tokens] | |
top_k_Latex = st.slider("Number of relevant content pieces to retrieve", 0, latex_max_content, 4, key="latex_token_num") | |
# latex_overlap_tokens = latex_chunk_tokens // 4 | |
latex_overlap_tokens = 0 | |
st.write(' ') | |
with st.expander('Expert model', expanded=False): | |
use_expert_answer = st.toggle("Use expert answer", value=True) | |
show_expert_responce = st.toggle("Show initial expert answer", value=False) | |
st.session_state.expert_model = st.selectbox( | |
"Choose the LLM model", | |
["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B", "gpt-4o-mini"], | |
index=0, | |
key='a1model' | |
) | |
if st.session_state.expert_model in ["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B"]: | |
expert_do_sample = st.toggle("Enable Sampling", value=False, key='expert_sample') | |
if expert_do_sample: | |
expert_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='expert_temp') | |
expert_top_k = st.slider("Top K", 0, 100, 50, key='expert_top_k') | |
expert_top_p = st.slider("Top P", 0.0, 1.0, 0.95, key='expert_top_p') | |
else: | |
expert_num_beams = st.slider("Num Beams", 1, 4, 1, key='expert_num_beams') | |
expert_max_new_tokens = st.slider("Max New Tokens", 100, 2000, 500, step=50, key='expert_max_new_tokens') | |
else: | |
expert_api_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='a1t') | |
expert_api_top_p = st.slider("Top P", 0.0, 1.0, 0.9, key='a1p') | |
with st.expander('Synthesis model',expanded=False): | |
# with st.container(border=True): | |
# Choose the LLM model | |
st.session_state.synthesis_model = st.selectbox( | |
"Choose the LLM model", | |
["LLaMA-3.2-3B","gpt-4o-mini"], # "LLaMA-3.2-11B", | |
index=1, | |
key='a2model' | |
) | |
if st.session_state.synthesis_model in ["LLaMA-3.2-3B", "LLaMA-3.2-11B"]: | |
synthesis_do_sample = st.toggle("Enable Sampling", value=False, key='synthesis_sample') | |
if synthesis_do_sample: | |
synthesis_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='synthesis_temp') | |
synthesis_top_k = st.slider("Top K", 0, 100, 50, key='synthesis_top_k') | |
synthesis_top_p = st.slider("Top P", 0.0, 1.0, 0.95, key='synthesis_top_p') | |
else: | |
synthesis_num_beams = st.slider("Num Beams", 1, 4, 1, key='synthesis_num_beams') | |
synthesis_max_new_tokens = st.slider("Max New Tokens", 100, 2000, 1500, step=50, key='synthesis_max_new_tokens') | |
else: | |
# Temperature | |
synthesis_api_temperature = st.slider("Temperature", 0.0, .3, .5, help="Defines the randomness in the next token prediction. Lower: More predictable and focused. Higher: More adventurous and diverse.", key='a2t') | |
synthesis_api_top_p = st.slider("Top P", 0.1, 0.5, .3, help="Defines the range of token choices the model can consider in the next prediction. Lower: More focused and restricted to high-probability options. Higher: More creative, allowing consideration of less likely options.", key='a2p') | |
# Main content area | |
if "question" not in st.session_state: | |
st.session_state.question = "" | |
text_area_placeholder = st.empty() | |
question_help = "Including details or instructions improves the answer." | |
st.session_state.question = text_area_placeholder.text_area( | |
"**Enter your query about Finite Element Method**", | |
height=120, | |
value=st.session_state.question, | |
help=question_help | |
) | |
_, col1, col2, _ = st.columns([4, 2, 4, 3]) | |
with col1: | |
submit_button_placeholder = st.empty() | |
with col2: | |
if st.button("Random Question"): | |
while True: | |
random_question = get_random_question(base_path + "/questions.txt") | |
if random_question != st.session_state.question: | |
break | |
st.session_state.question = random_question | |
text_area_placeholder.text_area( | |
"**Enter your query about Finite Element Method:**", | |
height=120, | |
value=st.session_state.question, | |
help=question_help | |
) | |
with st.spinner("Loading LLaMA-TOMMI-1.0-11B..."): | |
if st.session_state.expert_model == "LLaMA-TOMMI-1.0-11B": | |
if 'tommi_model' not in st.session_state: | |
tommi_model, tommi_tokenizer = load_fine_tuned_model(adapter_path, base_model_path) | |
st.session_state.tommi_model = tommi_model | |
st.session_state.tommi_tokenizer = tommi_tokenizer | |
with st.spinner("Loading LLaMA-3.2-11B..."): | |
if "LLaMA-3.2-11B" in [st.session_state.expert_model, st.session_state.synthesis_model]: | |
if 'llama_model' not in st.session_state: | |
llama_model, llama_tokenizer = load_base_model(base_model_path) | |
st.session_state.llama_model = llama_model | |
st.session_state.llama_tokenizer = llama_tokenizer | |
with st.spinner("Loading LLaMA-3.2-3B..."): | |
if "LLaMA-3.2-3B" in [st.session_state.expert_model, st.session_state.synthesis_model]: | |
if 'llama_model_3B' not in st.session_state: | |
llama_model_3B, llama_tokenizer_3B = load_base_model(base_model_path_3B) | |
st.session_state.llama_model_3B = llama_model_3B | |
st.session_state.llama_tokenizer_3B = llama_tokenizer_3B | |
# Load YouTube and LaTeX data | |
text_data_YT, context_embeddings_YT = load_youtube_data(base_path, model_name, yt_chunk_tokens, yt_overlap_tokens) | |
text_data_Latex, context_embeddings_Latex = load_book_data(base_path, model_name, latex_chunk_tokens, latex_overlap_tokens) | |
summary = load_summary('data/KG_FEM_summary.json') | |
if 'question_answered' not in st.session_state: | |
st.session_state.question_answered = False | |
if 'context_by_video' not in st.session_state: | |
st.session_state.context_by_video = {} | |
if 'context_by_section' not in st.session_state: | |
st.session_state.context_by_section = {} | |
if 'answer' not in st.session_state: | |
st.session_state.answer = "" | |
if 'playing_video_id' not in st.session_state: | |
st.session_state.playing_video_id = None | |
if submit_button_placeholder.button("AI Answer", type="primary"): | |
if st.session_state.question == "": | |
st.markdown("") | |
st.write("Please enter a query. :smirk:") | |
st.session_state.question_answered = False | |
else: | |
with st.spinner("Finding relevant contexts..."): | |
question_embedding = embed_question_openai(st.session_state.question, model_name) | |
initial_max_k = int(0.1 * context_embeddings_YT.shape[0]) | |
idx_YT = fixed_knn_retrieval(question_embedding, context_embeddings_YT, top_k=top_k_YT, min_k=0) | |
idx_Latex = fixed_knn_retrieval(question_embedding, context_embeddings_Latex, top_k=top_k_Latex, min_k=0) | |
with st.spinner("Answering the question..."): | |
relevant_contexts_YT = sorted([text_data_YT[i] for i in idx_YT], key=lambda x: x['order']) | |
relevant_contexts_Latex = sorted([text_data_Latex[i] for i in idx_Latex], key=lambda x: x['order']) | |
st.session_state.context_by_video = {} | |
for context_item in relevant_contexts_YT: | |
video_id = context_item['video_id'] | |
if video_id not in st.session_state.context_by_video: | |
st.session_state.context_by_video[video_id] = [] | |
st.session_state.context_by_video[video_id].append(context_item) | |
st.session_state.context_by_section = {} | |
for context_item in relevant_contexts_Latex: | |
section_id = context_item['section'] | |
if section_id not in st.session_state.context_by_section: | |
st.session_state.context_by_section[section_id] = [] | |
st.session_state.context_by_section[section_id].append(context_item) | |
context = '' | |
for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1): | |
for context_item in contexts: | |
start_time = int(context_item['start']) | |
context += f'Video {i}, time: {sec_to_time(start_time)}:' + context_item['text'] + '\n\n' | |
for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1): | |
context += f'Section {i} ({section_id}):\n' | |
for context_item in contexts: | |
context += context_item['text'] + '\n\n' | |
#------------------------- | |
# getting expert answer | |
#------------------------- | |
if use_expert_answer: | |
if st.session_state.expert_model in ["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B"]: | |
if st.session_state.expert_model == "LLaMA-TOMMI-1.0-11B": | |
model_ = st.session_state.tommi_model | |
tokenizer_ = st.session_state.tommi_tokenizer | |
elif st.session_state.expert_model == "LLaMA-3.2-11B": | |
model_ = st.session_state.llama_model | |
tokenizer_ = st.session_state.llama_tokenizer | |
messages = [ | |
{"role": "system", "content": get_expert_system_prompt()}, | |
{"role": "user", "content": st.session_state.question} | |
] | |
expert_answer = generate_response( | |
model=model_, | |
tokenizer=tokenizer_, | |
messages=messages, | |
tokenizer_max_length=500, | |
do_sample=expert_do_sample, | |
temperature=expert_temperature if expert_do_sample else None, | |
top_k=expert_top_k if expert_do_sample else None, | |
top_p=expert_top_p if expert_do_sample else None, | |
num_beams=expert_num_beams if not expert_do_sample else 1, | |
max_new_tokens=expert_max_new_tokens | |
) | |
else: # openai | |
expert_answer = openai_domain_specific_answer_generation( | |
get_expert_system_prompt(), | |
st.session_state.question, | |
model=st.session_state.expert_model, | |
temperature=expert_api_temperature, | |
top_p=expert_api_top_p | |
) | |
st.session_state.expert_answer = fix_latex(expert_answer) | |
else: | |
st.session_state.expert_answer = 'No Expert Answer. Only use the context.' | |
#------------------------- | |
# synthesis responses | |
#------------------------- | |
if st.session_state.synthesis_model in ["LLaMA-3.2-3B", "LLaMA-3.2-11B"]: | |
if st.session_state.expert_model == "LLaMA-3.2-11B": | |
model_s = st.session_state.llama_model | |
tokenizer_s = st.session_state.llama_tokenizer | |
elif st.session_state.expert_model == "LLaMA-3.2-3B": | |
model_s = st.session_state.llama_model_3B | |
tokenizer_s = st.session_state.llama_tokenizer_3B | |
synthesis_prompt = f""" | |
Question: | |
{st.session_state.question} | |
Direct Answer: | |
{st.session_state.expert_answer} | |
Retrieved Context: | |
{context} | |
Final Answer: | |
""" | |
messages = [ | |
{"role": "system", "content": get_synthesis_system_prompt("Finite Element Method")}, | |
{"role": "user", "content": synthesis_prompt} | |
] | |
synthesis_answer = generate_response( | |
model=model_s, | |
tokenizer=tokenizer_s, | |
messages=messages, | |
tokenizer_max_length=30000, | |
do_sample=synthesis_do_sample, | |
temperature=synthesis_temperature if synthesis_do_sample else None, | |
top_k=synthesis_top_k if synthesis_do_sample else None, | |
top_p=synthesis_top_p if synthesis_do_sample else None, | |
num_beams=synthesis_num_beams if not synthesis_do_sample else 1, | |
max_new_tokens=synthesis_max_new_tokens | |
) | |
else: | |
synthesis_answer = openai_context_integration( | |
get_synthesis_system_prompt("Finite Element Method"), | |
st.session_state.question, | |
st.session_state.expert_answer, | |
context, | |
model=st.session_state.synthesis_model, | |
temperature=synthesis_api_temperature, | |
top_p=synthesis_api_top_p | |
) | |
# quick check after getting the answer | |
if synthesis_answer.split()[0] == "NOT_ENOUGH_INFO": | |
st.markdown("") | |
st.markdown("#### Query:") | |
st.markdown(fix_latex(st.session_state.question)) | |
if show_expert_responce: | |
st.markdown("#### Initial Expert Answer:") | |
st.markdown(st.session_state.expert_answer) | |
st.markdown("#### Answer:") | |
st.write(":smiling_face_with_tear:") | |
st.markdown(synthesis_answer.split('NOT_ENOUGH_INFO')[1]) | |
st.divider() | |
st.caption(get_disclaimer()) | |
# st.caption("The AI Teaching Assistant project") | |
st.session_state.question_answered = False | |
st.stop() | |
else: | |
st.session_state.answer = fix_latex(synthesis_answer) | |
st.session_state.question_answered = True | |
if st.session_state.question_answered: | |
st.markdown("") | |
st.markdown("#### Query:") | |
st.markdown(fix_latex(st.session_state.question)) | |
if show_expert_responce: | |
st.markdown("#### Initial Expert Answer:") | |
st.markdown(st.session_state.expert_answer) | |
st.markdown("#### Answer:") | |
st.markdown(st.session_state.answer) | |
if top_k_YT > 0: | |
st.markdown("#### Retrieved content in lecture videos") | |
for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1): | |
# with st.expander(f"**Video {i}** | {contexts[0]['title']}", expanded=True): | |
with st.container(border=True): | |
st.markdown(f"**Video {i} | {contexts[0]['title']}**") | |
video_placeholder = st.empty() | |
video_placeholder.markdown(get_youtube_embed(video_id, 0, 0), unsafe_allow_html=True) | |
st.markdown('') | |
with st.container(border=False): | |
st.markdown("Retrieved Times") | |
cols = st.columns([1 for i in range(len(contexts))] + [9 - len(contexts)]) | |
for j, context_item in enumerate(contexts): | |
start_time = int(context_item['start']) | |
label = sec_to_time(start_time) | |
if cols[j].button(label, key=f"{video_id}_{start_time}"): | |
if st.session_state.playing_video_id is not None: | |
st.session_state.playing_video_id = None | |
video_placeholder.empty() | |
video_placeholder.markdown(get_youtube_embed(video_id, start_time, 1), unsafe_allow_html=True) | |
st.session_state.playing_video_id = video_id | |
with st.expander("Video Summary", expanded=False): | |
# st.write("##### Video Overview:") | |
st.markdown(summary[video_id]) | |
if show_textbook and top_k_Latex > 0: | |
st.markdown("#### Retrieved content in textbook",help="The Finite Element Method: Linear Static and Dynamic Finite Element Analysis") | |
for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1): | |
# with st.expander(f"**Section {i} | {section_id}**", expanded=True): | |
st.markdown(f"**Section {i} | {section_id}**") | |
for context_item in contexts: | |
st.markdown(context_item['text']) | |
st.divider() | |
st.markdown(" ") | |
st.divider() | |
st.caption(get_disclaimer()) |