File size: 20,107 Bytes
5c2a5a2
b849b51
6f5e4d4
 
b849b51
6f5e4d4
f7429e0
 
c1f91db
f7429e0
 
 
b849b51
f7429e0
b849b51
5c2a5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f5e4d4
 
5c2a5a2
 
ad53e30
fd97c8c
ebd213f
ad53e30
9f756e6
6f5e4d4
9f756e6
07c040d
5c2a5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737a09d
b849b51
 
 
5c2a5a2
d340abc
 
737a09d
 
d340abc
 
 
737a09d
 
5c2a5a2
737a09d
 
 
 
b849b51
737a09d
b849b51
737a09d
b849b51
737a09d
 
5c2a5a2
 
 
 
737a09d
 
fd97c8c
17aac59
737a09d
 
 
fd97c8c
737a09d
5c2a5a2
737a09d
 
 
 
 
 
 
c15c518
737a09d
 
 
5c2a5a2
737a09d
5c2a5a2
 
 
 
 
f7429e0
5c2a5a2
 
 
737a09d
5c2a5a2
 
 
 
 
 
 
 
 
 
 
 
c1f91db
5c2a5a2
 
 
 
737a09d
5c2a5a2
 
 
 
 
fd97c8c
 
 
 
 
 
 
 
737a09d
 
 
 
 
 
 
fd97c8c
 
 
 
 
 
737a09d
5c2a5a2
63a7c65
 
5c2a5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
737a09d
 
 
 
 
 
5c2a5a2
f7429e0
5c2a5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737a09d
 
 
5c2a5a2
737a09d
 
 
 
 
 
 
 
 
 
b849b51
737a09d
b849b51
 
 
f7429e0
737a09d
 
b849b51
fd97c8c
737a09d
 
 
 
 
 
b849b51
737a09d
 
f7429e0
 
b849b51
737a09d
 
 
b849b51
737a09d
f7429e0
737a09d
5c2a5a2
 
b849b51
737a09d
 
 
fd97c8c
c15c518
 
 
 
 
 
 
 
 
737a09d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c15c518
 
737a09d
fd97c8c
737a09d
 
 
 
 
 
 
b849b51
737a09d
 
 
 
 
 
 
 
 
 
 
 
 
5c2a5a2
 
f7429e0
5c2a5a2
 
 
 
 
737a09d
5c2a5a2
f7429e0
5c2a5a2
 
 
 
737a09d
 
5c2a5a2
 
 
 
4a6114a
5c2a5a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7429e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import os

# Set the cache directory to persistent storage
os.environ["HF_HOME"] = "/data/.cache/huggingface"

import streamlit as st
from utils.help import get_disclaimer
from utils.format import sec_to_time, fix_latex, get_youtube_embed
from utils.rag_utils import load_youtube_data, load_book_data, load_summary, fixed_knn_retrieval, get_random_question
from utils.system_prompts import get_expert_system_prompt, get_synthesis_system_prompt
from utils.openai_utils import embed_question_openai, openai_domain_specific_answer_generation, openai_context_integration
from utils.llama_utils import get_bnb_config, load_base_model, load_fine_tuned_model, generate_response

st.set_page_config(page_title="AI University")

st.markdown("""
    <style>
    .video-wrapper {
        position: relative;
        padding-bottom: 56.25%;
        height: 0;
    }
    .video-wrapper iframe {
        position: absolute;
        top: 0;
        left: 0;
        width: 100%;
        height: 100%;
    }
    </style>
    """, unsafe_allow_html=True)

# ---------------------------------------
# paths
# ---------------------------------------
base_path = "data/"
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
base_model_path_3B = "meta-llama/Llama-3.2-3B-Instruct"
adapter_path = "./LLaMA-TOMMI-1.0/"

st.title(":red[AI University] :gray[/] FEM")
# st.markdown("### Finite Element Method")
st.markdown("Welcome to :red[AI University]—an AI-powered platform designed to address scientific course queries, dynamically adapting to instructors' teaching styles and students' learning needs. This prototype demonstrates the capabilities of the AI University platform by providing expert answers to queries related to a graduate-level :red[Finite Element Method (FEM)] course")

st.markdown(" ")
st.markdown(" ")
# st.divider()
# Sidebar for settings
with st.sidebar:
    st.header("Settings")
    # with st.container(border=True):
    # Embedding model

    model_name = st.selectbox("Choose content embedding model", [
        "text-embedding-3-small",
        # "text-embedding-3-large",
        # "all-MiniLM-L6-v2", 
        # "all-mpnet-base-v2"
    ], 
    # help="""
    # Select the embedding model to use for encoding the retrieved text data. 
    # Options include OpenAI's `text-embedding-3` models and two widely
    # used SentenceTransformers models.
    # """
    )
    
    with st.container(border=True):
        st.write('**Video lectures**')
        yt_token_choice = st.select_slider("Token per content", [256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="yt_token_len")
        yt_chunk_tokens = yt_token_choice
        yt_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[yt_chunk_tokens]
        top_k_YT = st.slider("Number of relevant content pieces to retrieve", 0, yt_max_content, 4, key="yt_token_num")
        yt_overlap_tokens = yt_chunk_tokens // 4

    # st.divider()
    with st.container(border=True):
        st.write('**Textbook**')
        show_textbook = False
        # show_textbook = st.toggle("Show Textbook Content", value=False)
        latex_token_choice = st.select_slider("Token per content", [128, 256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="latex_token_len")
        latex_chunk_tokens = latex_token_choice
        latex_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[latex_chunk_tokens]
        top_k_Latex = st.slider("Number of relevant content pieces to retrieve", 0, latex_max_content, 4, key="latex_token_num")
        # latex_overlap_tokens = latex_chunk_tokens // 4
        latex_overlap_tokens = 0

    st.write(' ')
    with st.expander('Expert model', expanded=False):
            use_expert_answer = st.toggle("Use expert answer", value=True)
            show_expert_responce = st.toggle("Show initial expert answer", value=False)

            st.session_state.expert_model = st.selectbox(
                "Choose the LLM model",
                ["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B", "gpt-4o-mini"],
                index=0,
                key='a1model'
            )

            if st.session_state.expert_model in ["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B"]:
                expert_do_sample = st.toggle("Enable Sampling", value=False, key='expert_sample')

                if expert_do_sample:
                    expert_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='expert_temp')
                    expert_top_k = st.slider("Top K", 0, 100, 50, key='expert_top_k')
                    expert_top_p = st.slider("Top P", 0.0, 1.0, 0.95, key='expert_top_p')
                else:
                    expert_num_beams = st.slider("Num Beams", 1, 4, 1, key='expert_num_beams')

                expert_max_new_tokens = st.slider("Max New Tokens", 100, 2000, 500, step=50, key='expert_max_new_tokens')
            else:
                expert_api_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='a1t')
                expert_api_top_p = st.slider("Top P", 0.0, 1.0, 0.9, key='a1p')

    with st.expander('Synthesis model',expanded=False):
        # with st.container(border=True):
        # Choose the LLM model
        st.session_state.synthesis_model = st.selectbox(
            "Choose the LLM model",
            ["LLaMA-3.2-3B","gpt-4o-mini"], # "LLaMA-3.2-11B", 
            index=1,
            key='a2model'
        )
        
        if st.session_state.synthesis_model in ["LLaMA-3.2-3B", "LLaMA-3.2-11B"]:
                synthesis_do_sample = st.toggle("Enable Sampling", value=False, key='synthesis_sample')

                if synthesis_do_sample:
                    synthesis_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='synthesis_temp')
                    synthesis_top_k = st.slider("Top K", 0, 100, 50, key='synthesis_top_k')
                    synthesis_top_p = st.slider("Top P", 0.0, 1.0, 0.95, key='synthesis_top_p')
                else:
                    synthesis_num_beams = st.slider("Num Beams", 1, 4, 1, key='synthesis_num_beams')

                synthesis_max_new_tokens = st.slider("Max New Tokens", 100, 2000, 1500, step=50, key='synthesis_max_new_tokens')
        else:
            # Temperature
            synthesis_api_temperature = st.slider("Temperature", 0.0, .3, .5, help="Defines the randomness in the next token prediction. Lower: More predictable and focused. Higher: More adventurous and diverse.", key='a2t')

            synthesis_api_top_p = st.slider("Top P", 0.1, 0.5, .3, help="Defines the range of token choices the model can consider in the next prediction. Lower: More focused and restricted to high-probability options. Higher: More creative, allowing consideration of less likely options.", key='a2p')

# Main content area
if "question" not in st.session_state:
    st.session_state.question = ""


text_area_placeholder = st.empty()
question_help = "Including details or instructions improves the answer."
st.session_state.question = text_area_placeholder.text_area(
    "**Enter your query about Finite Element Method**",
    height=120,
    value=st.session_state.question,
    help=question_help
)

_, col1, col2, _ = st.columns([4, 2, 4, 3]) 
with col1:
    submit_button_placeholder = st.empty()

with col2:
    if st.button("Random Question"):
        while True:
            random_question = get_random_question(base_path + "/questions.txt")
            if random_question != st.session_state.question:
                break
        st.session_state.question = random_question
        text_area_placeholder.text_area(
            "**Enter your query about Finite Element Method:**",
            height=120,
            value=st.session_state.question,
            help=question_help
        )

with st.spinner("Loading LLaMA-TOMMI-1.0-11B..."):
    if st.session_state.expert_model == "LLaMA-TOMMI-1.0-11B":
        if 'tommi_model' not in st.session_state: 
            tommi_model, tommi_tokenizer = load_fine_tuned_model(adapter_path, base_model_path)
            st.session_state.tommi_model = tommi_model
            st.session_state.tommi_tokenizer = tommi_tokenizer


with st.spinner("Loading LLaMA-3.2-11B..."):
    if "LLaMA-3.2-11B" in [st.session_state.expert_model, st.session_state.synthesis_model]:
        if 'llama_model' not in st.session_state: 
            llama_model, llama_tokenizer = load_base_model(base_model_path)
            st.session_state.llama_model = llama_model
            st.session_state.llama_tokenizer = llama_tokenizer

with st.spinner("Loading LLaMA-3.2-3B..."):
    if "LLaMA-3.2-3B" in [st.session_state.expert_model, st.session_state.synthesis_model]:
        if 'llama_model_3B' not in st.session_state: 
            llama_model_3B, llama_tokenizer_3B = load_base_model(base_model_path_3B)
            st.session_state.llama_model_3B = llama_model_3B
            st.session_state.llama_tokenizer_3B = llama_tokenizer_3B

# Load YouTube and LaTeX data
text_data_YT, context_embeddings_YT = load_youtube_data(base_path, model_name, yt_chunk_tokens, yt_overlap_tokens)
text_data_Latex, context_embeddings_Latex = load_book_data(base_path, model_name, latex_chunk_tokens, latex_overlap_tokens)
summary = load_summary('data/KG_FEM_summary.json')

if 'question_answered' not in st.session_state:
    st.session_state.question_answered = False
if 'context_by_video' not in st.session_state:
    st.session_state.context_by_video = {}
if 'context_by_section' not in st.session_state:
    st.session_state.context_by_section = {}
if 'answer' not in st.session_state:
    st.session_state.answer = ""
if 'playing_video_id' not in st.session_state:
    st.session_state.playing_video_id = None

if submit_button_placeholder.button("AI Answer", type="primary"): 
    if st.session_state.question == "":
        st.markdown("")
        st.write("Please enter a query. :smirk:")
        st.session_state.question_answered = False

    else:    
        with st.spinner("Finding relevant contexts..."):
            question_embedding = embed_question_openai(st.session_state.question, model_name)
            initial_max_k = int(0.1 * context_embeddings_YT.shape[0])
            idx_YT = fixed_knn_retrieval(question_embedding, context_embeddings_YT, top_k=top_k_YT, min_k=0)
            idx_Latex = fixed_knn_retrieval(question_embedding, context_embeddings_Latex, top_k=top_k_Latex, min_k=0)

        with st.spinner("Answering the question..."):
            relevant_contexts_YT = sorted([text_data_YT[i] for i in idx_YT], key=lambda x: x['order'])
            relevant_contexts_Latex = sorted([text_data_Latex[i] for i in idx_Latex], key=lambda x: x['order'])

            st.session_state.context_by_video = {}
            for context_item in relevant_contexts_YT:
                video_id = context_item['video_id']
                if video_id not in st.session_state.context_by_video:
                    st.session_state.context_by_video[video_id] = []
                st.session_state.context_by_video[video_id].append(context_item)

            st.session_state.context_by_section = {}
            for context_item in relevant_contexts_Latex:
                section_id = context_item['section']
                if section_id not in st.session_state.context_by_section:
                    st.session_state.context_by_section[section_id] = []
                st.session_state.context_by_section[section_id].append(context_item)

            context = ''
            for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1):
                for context_item in contexts:
                    start_time = int(context_item['start'])
                    context += f'Video {i}, time: {sec_to_time(start_time)}:' + context_item['text'] + '\n\n'

            for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1):
                context += f'Section {i} ({section_id}):\n'
                for context_item in contexts:
                    context += context_item['text'] + '\n\n'
            
            #-------------------------
            # getting expert answer
            #-------------------------
            if use_expert_answer:
                if st.session_state.expert_model in ["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B"]:

                    if st.session_state.expert_model == "LLaMA-TOMMI-1.0-11B":
                        model_ = st.session_state.tommi_model
                        tokenizer_ = st.session_state.tommi_tokenizer
                        
                    elif st.session_state.expert_model == "LLaMA-3.2-11B":
                        model_ = st.session_state.llama_model
                        tokenizer_ = st.session_state.llama_tokenizer
                        
                    messages = [
                        {"role": "system", "content": get_expert_system_prompt()},
                        {"role": "user", "content": st.session_state.question}
                    ]

                    expert_answer = generate_response(
                        model=model_,
                        tokenizer=tokenizer_,
                        messages=messages,
                        tokenizer_max_length=500,
                        do_sample=expert_do_sample,
                        temperature=expert_temperature if expert_do_sample else None,
                        top_k=expert_top_k if expert_do_sample else None,
                        top_p=expert_top_p if expert_do_sample else None,
                        num_beams=expert_num_beams if not expert_do_sample else 1,
                        max_new_tokens=expert_max_new_tokens
                    )

                else:  # openai
                    expert_answer = openai_domain_specific_answer_generation(
                        get_expert_system_prompt(),
                        st.session_state.question,
                        model=st.session_state.expert_model,
                        temperature=expert_api_temperature,
                        top_p=expert_api_top_p
                    )

                st.session_state.expert_answer = fix_latex(expert_answer)

            else:
                st.session_state.expert_answer = 'No Expert Answer. Only use the context.'

            #-------------------------
            # synthesis responses
            #-------------------------
            if st.session_state.synthesis_model in ["LLaMA-3.2-3B", "LLaMA-3.2-11B"]:

                if st.session_state.expert_model == "LLaMA-3.2-11B":
                    model_s = st.session_state.llama_model
                    tokenizer_s = st.session_state.llama_tokenizer
                    
                elif st.session_state.expert_model == "LLaMA-3.2-3B":
                    model_s = st.session_state.llama_model_3B
                    tokenizer_s = st.session_state.llama_tokenizer_3B

                synthesis_prompt = f"""
                Question:
                {st.session_state.question}

                Direct Answer:
                {st.session_state.expert_answer}

                Retrieved Context:
                {context}

                Final Answer:
                """
                messages = [
                    {"role": "system", "content": get_synthesis_system_prompt("Finite Element Method")},
                    {"role": "user", "content": synthesis_prompt}
                ]

                synthesis_answer = generate_response(
                    model=model_s,
                    tokenizer=tokenizer_s,
                    messages=messages,
                    tokenizer_max_length=30000,
                    do_sample=synthesis_do_sample,
                    temperature=synthesis_temperature if synthesis_do_sample else None,
                    top_k=synthesis_top_k if synthesis_do_sample else None,
                    top_p=synthesis_top_p if synthesis_do_sample else None,
                    num_beams=synthesis_num_beams if not synthesis_do_sample else 1,
                    max_new_tokens=synthesis_max_new_tokens
                )

            else:
                synthesis_answer = openai_context_integration(
                    get_synthesis_system_prompt("Finite Element Method"),
                    st.session_state.question,
                    st.session_state.expert_answer,
                    context,
                    model=st.session_state.synthesis_model,
                    temperature=synthesis_api_temperature,
                    top_p=synthesis_api_top_p
                )

        # quick check after getting the answer
        if synthesis_answer.split()[0] == "NOT_ENOUGH_INFO":
            st.markdown("")
            st.markdown("#### Query:")
            st.markdown(fix_latex(st.session_state.question))
            if show_expert_responce:
                st.markdown("#### Initial Expert Answer:")
                st.markdown(st.session_state.expert_answer)
            st.markdown("#### Answer:")
            st.write(":smiling_face_with_tear:")
            st.markdown(synthesis_answer.split('NOT_ENOUGH_INFO')[1])
            st.divider()
            st.caption(get_disclaimer())
            # st.caption("The AI Teaching Assistant project")
            st.session_state.question_answered = False
            st.stop()   
        else:
            st.session_state.answer = fix_latex(synthesis_answer)
            st.session_state.question_answered = True

if st.session_state.question_answered:
    st.markdown("")
    st.markdown("#### Query:")
    st.markdown(fix_latex(st.session_state.question))
    if show_expert_responce:
        st.markdown("#### Initial Expert Answer:")
        st.markdown(st.session_state.expert_answer)
    st.markdown("#### Answer:")
    st.markdown(st.session_state.answer)
    
    if top_k_YT > 0:
        st.markdown("#### Retrieved content in lecture videos")
        for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1):
            # with st.expander(f"**Video {i}** | {contexts[0]['title']}", expanded=True):
            with st.container(border=True):
                st.markdown(f"**Video {i} | {contexts[0]['title']}**")
                video_placeholder = st.empty()
                video_placeholder.markdown(get_youtube_embed(video_id, 0, 0), unsafe_allow_html=True)
                st.markdown('')
                with st.container(border=False):
                    st.markdown("Retrieved Times")
                    cols = st.columns([1 for i in range(len(contexts))] + [9 - len(contexts)])
                    for j, context_item in enumerate(contexts):
                        start_time = int(context_item['start'])
                        label = sec_to_time(start_time)
                        if cols[j].button(label, key=f"{video_id}_{start_time}"):
                            if st.session_state.playing_video_id is not None:
                                st.session_state.playing_video_id = None
                                video_placeholder.empty()
                            video_placeholder.markdown(get_youtube_embed(video_id, start_time, 1), unsafe_allow_html=True)
                            st.session_state.playing_video_id = video_id
                
                with st.expander("Video Summary", expanded=False):
                    # st.write("##### Video Overview:")
                    st.markdown(summary[video_id])

    if show_textbook and top_k_Latex > 0:
        st.markdown("#### Retrieved content in textbook",help="The Finite Element Method: Linear Static and Dynamic Finite Element Analysis")
        for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1):
            # with st.expander(f"**Section {i} | {section_id}**", expanded=True):
            st.markdown(f"**Section {i} | {section_id}**")
            for context_item in contexts:
                st.markdown(context_item['text'])
                st.divider()

st.markdown(" ")
st.divider()
st.caption(get_disclaimer())