Spaces:
Running
on
L4
Running
on
L4
File size: 23,247 Bytes
5c2a5a2 b849b51 6f5e4d4 b849b51 cc81ecf 6f5e4d4 f7429e0 0f9d3df f7429e0 b849b51 f7429e0 b849b51 5c2a5a2 6f5e4d4 5c2a5a2 35f0bee ad53e30 fd97c8c 35f0bee f0f4c54 a74945c f0f4c54 07c040d 5c2a5a2 f0f4c54 5c2a5a2 49fe168 0f9d3df 49fe168 0f9d3df 49fe168 0f9d3df 49fe168 0f9d3df 49fe168 0f9d3df 5c2a5a2 737a09d b849b51 f0f4c54 5c2a5a2 a74945c d340abc fcf7a3a cc81ecf d340abc 737a09d 5c2a5a2 737a09d b849b51 737a09d b849b51 737a09d b849b51 737a09d 5c2a5a2 0f9d3df 737a09d 6369dd5 a74945c 737a09d fd97c8c 737a09d 5c2a5a2 737a09d c15c518 737a09d 5c2a5a2 737a09d 5c2a5a2 f7429e0 5c2a5a2 737a09d 5c2a5a2 35f0bee 5c2a5a2 737a09d 5c2a5a2 fd97c8c 737a09d fd97c8c 737a09d 5c2a5a2 35f0bee 5c2a5a2 737a09d 5c2a5a2 0f9d3df 5c2a5a2 49fe168 5c2a5a2 0f9d3df 5c2a5a2 49fe168 737a09d f0f4c54 737a09d b849b51 737a09d b849b51 f7429e0 737a09d b849b51 fd97c8c 737a09d b849b51 737a09d f7429e0 b849b51 737a09d b849b51 737a09d f7429e0 737a09d 5c2a5a2 b849b51 737a09d fd97c8c c15c518 49fe168 c15c518 49fe168 c15c518 737a09d c15c518 737a09d fd97c8c 737a09d b849b51 737a09d 5c2a5a2 f7429e0 5c2a5a2 737a09d 5c2a5a2 f7429e0 5c2a5a2 737a09d 5c2a5a2 4a6114a 5c2a5a2 0f9d3df 5c2a5a2 f7429e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import os
# Set the cache directory to persistent storage
os.environ["HF_HOME"] = "/data/.cache/huggingface"
from huggingface_hub import snapshot_download
import streamlit as st
from utils.help import get_disclaimer
from utils.format import sec_to_time, fix_latex, get_youtube_embed
from utils.rag_utils import load_youtube_data, load_book_data, load_summary, embed_question_sentence_transformer, fixed_knn_retrieval, get_random_question
from utils.system_prompts import get_expert_system_prompt, get_synthesis_system_prompt
from utils.openai_utils import embed_question_openai, openai_domain_specific_answer_generation, openai_context_integration
from utils.llama_utils import get_bnb_config, load_base_model, load_fine_tuned_model, generate_response
st.set_page_config(page_title="AI University")
st.markdown("""
<style>
.video-wrapper {
position: relative;
padding-bottom: 56.25%;
height: 0;
}
.video-wrapper iframe {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
}
</style>
""", unsafe_allow_html=True)
# ---------------------------------------
# paths
# ---------------------------------------
HOME = "/home/user/app"
data_dir = HOME +"/data"
private_data_dir = HOME + "/private_data" # Relative path in your Space
# getting private data
os.makedirs(private_data_dir, exist_ok=True)
token = os.getenv("data")
local_repo_path = snapshot_download(
repo_id="my-ai-university/data",
use_auth_token=token,
repo_type="dataset",
local_dir=private_data_dir,
)
adapter_path = HOME + "/LLaMA-TOMMI-1.0/"
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
base_model_path_3B = "meta-llama/Llama-3.2-3B-Instruct"
# ---------------------------------------
# ---------------------------------------
st.title(":red[AI University] :gray[/] FEM")
st.markdown("""
Welcome to <span style='color:red'><a href='https://my-ai-university.com/' target='_blank' style='text-decoration: none; color: red;'>AI University</a></span> β an AI-powered platform designed to address scientific course queries, dynamically adapting to instructors' teaching styles and students' learning needs.
This prototype showcases the capabilities of the <span style='color:red'><a href='https://github.com/my-ai-university' target='_blank' style='text-decoration: none; color: red;'>AI University platform</a></span> by providing expert answers to queries related to a graduate-level <span style='color:red'><a href='https://www.youtube.com/playlist?list=PLJhG_d-Sp_JHKVRhfTgDqbic_4MHpltXZ' target='_blank' style='text-decoration: none; color: red;'>Finite Element Method (FEM)</a></span> course.
""", unsafe_allow_html=True)
st.markdown(" ")
with st.container(border=False):
st.info("""
Heavy traffic or GPU limits may increase response time or cause errors. Disable expert model for faster replies or try again later.
""", icon="π")
if 'activate_expert' in st.session_state:
st.session_state.activate_expert = st.toggle("Use expert model", value=st.session_state.activate_expert, key="use_expert_model1")
else:
st.session_state.activate_expert = st.toggle("Use expert model", value=True, key="use_expert_model1", help='More accurate but slower')
st.markdown(" ")
st.markdown(" ")
# st.divider()
# Sidebar for settings
with st.sidebar:
st.header("Settings")
with st.expander('Embedding model',expanded=True):
# with st.container(border=True):
# Embedding model
embedding_model = st.selectbox("Choose content embedding model", [
"text-embedding-3-small",
# "text-embedding-3-large",
"all-MiniLM-L6-v2",
# "all-mpnet-base-v2"
],
# help="""
# Select the embedding model to use for encoding the retrieved text data.
# Options include OpenAI's `text-embedding-3` models and two widely
# used SentenceTransformers models.
# """
)
st.divider()
# with st.container(border=False):
st.write('**Video lectures**')
if embedding_model == "all-MiniLM-L6-v2":
yt_token_choice = st.select_slider("Token per content", [128, 256], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="yt_token_len")
elif embedding_model == "text-embedding-3-small":
yt_token_choice = st.select_slider("Token per content", [256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="yt_token_len")
yt_chunk_tokens = yt_token_choice
yt_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[yt_chunk_tokens]
top_k_YT = st.slider("Number of content pieces to retrieve", 0, yt_max_content, 4, key="yt_token_num")
yt_overlap_tokens = yt_chunk_tokens // 4
st.divider()
# with st.container(border=False):
st.write('**Textbook**')
show_textbook = False
# show_textbook = st.toggle("Show Textbook Content", value=False)
if embedding_model == "all-MiniLM-L6-v2":
latex_token_choice = st.select_slider("Token per content", [128, 256], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="latex_token_len")
elif embedding_model == "text-embedding-3-small":
latex_token_choice = st.select_slider("Token per content", [128, 256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="latex_token_len")
latex_chunk_tokens = latex_token_choice
latex_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[latex_chunk_tokens]
top_k_Latex = st.slider("Number of content pieces to retrieve", 0, latex_max_content, 4, key="latex_token_num")
# latex_overlap_tokens = latex_chunk_tokens // 4
latex_overlap_tokens = 0
st.write(' ')
with st.expander('Expert model', expanded=False):
if st.session_state.activate_expert:
st.session_state.activate_expert = st.toggle("Use expert model", value=True)
else:
st.session_state.activate_expert = st.toggle("Use expert model", value=False)
show_expert_responce = st.toggle("Show initial expert answer", value=False)
st.session_state.expert_model = st.selectbox(
"Choose the LLM model",
["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B", "gpt-4.1-mini"],
index=0,
key='a1model'
)
if st.session_state.expert_model in ["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B"]:
expert_do_sample = st.toggle("Enable Sampling", value=False, key='expert_sample')
if expert_do_sample:
expert_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='expert_temp')
expert_top_k = st.slider("Top K", 0, 100, 50, key='expert_top_k')
expert_top_p = st.slider("Top P", 0.0, 1.0, 0.95, key='expert_top_p')
else:
expert_num_beams = st.slider("Num Beams", 1, 4, 1, key='expert_num_beams')
expert_max_new_tokens = st.slider("Max New Tokens", 100, 2000, 500, step=50, key='expert_max_new_tokens')
else:
expert_api_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='a1t')
expert_api_top_p = st.slider("Top P", 0.0, 1.0, 0.9, key='a1p')
with st.expander('Synthesis model',expanded=False):
# with st.container(border=True):
# Choose the LLM model
show_yt_context = st.toggle("Show retrieved video content", value=False)
st.session_state.synthesis_model = st.selectbox(
"Choose the LLM model",
["LLaMA-3.2-3B", "gpt-4o-mini", "gpt-4.1-mini"], # "LLaMA-3.2-11B",
index=2,
key='a2model'
)
if st.session_state.synthesis_model in ["LLaMA-3.2-3B", "LLaMA-3.2-11B"]:
synthesis_do_sample = st.toggle("Enable Sampling", value=False, key='synthesis_sample')
if synthesis_do_sample:
synthesis_temperature = st.slider("Temperature", 0.0, 1.5, 0.7, key='synthesis_temp')
synthesis_top_k = st.slider("Top K", 0, 100, 50, key='synthesis_top_k')
synthesis_top_p = st.slider("Top P", 0.0, 1.0, 0.95, key='synthesis_top_p')
else:
synthesis_num_beams = st.slider("Num Beams", 1, 4, 1, key='synthesis_num_beams')
synthesis_max_new_tokens = st.slider("Max New Tokens", 100, 2000, 1500, step=50, key='synthesis_max_new_tokens')
else:
# Temperature
synthesis_api_temperature = st.slider("Temperature", 0.0, .3, .5, help="Defines the randomness in the next token prediction. Lower: More predictable and focused. Higher: More adventurous and diverse.", key='a2t')
synthesis_api_top_p = st.slider("Top P", 0.1, 0.5, .3, help="Defines the range of token choices the model can consider in the next prediction. Lower: More focused and restricted to high-probability options. Higher: More creative, allowing consideration of less likely options.", key='a2p')
# Main content area
if "question" not in st.session_state:
st.session_state.question = ""
text_area_placeholder = st.empty()
question_help = "Including details or instructions improves the answer."
st.session_state.question = text_area_placeholder.text_area(
"**Enter your query about Finite Element Method**",
height=120,
value=st.session_state.question,
help=question_help
)
_, col1, col2, _ = st.columns([4, 2, 4, 3])
with col1:
submit_button_placeholder = st.empty()
with col2:
if st.button("Random Question"):
while True:
random_question = get_random_question(data_dir + "/questions.txt")
if random_question != st.session_state.question:
break
st.session_state.question = random_question
text_area_placeholder.text_area(
"**Enter your query about Finite Element Method:**",
height=120,
value=st.session_state.question,
help=question_help
)
with st.spinner("Loading LLaMA-TOMMI-1.0-11B..."):
if st.session_state.expert_model == "LLaMA-TOMMI-1.0-11B":
if 'tommi_model' not in st.session_state:
tommi_model, tommi_tokenizer = load_fine_tuned_model(adapter_path, base_model_path)
st.session_state.tommi_model = tommi_model
st.session_state.tommi_tokenizer = tommi_tokenizer
with st.spinner("Loading LLaMA-3.2-11B..."):
if "LLaMA-3.2-11B" in [st.session_state.expert_model, st.session_state.synthesis_model]:
if 'llama_model' not in st.session_state:
llama_model, llama_tokenizer = load_base_model(base_model_path)
st.session_state.llama_model = llama_model
st.session_state.llama_tokenizer = llama_tokenizer
with st.spinner("Loading LLaMA-3.2-3B..."):
if "LLaMA-3.2-3B" in [st.session_state.expert_model, st.session_state.synthesis_model]:
if 'llama_model_3B' not in st.session_state:
llama_model_3B, llama_tokenizer_3B = load_base_model(base_model_path_3B)
st.session_state.llama_model_3B = llama_model_3B
st.session_state.llama_tokenizer_3B = llama_tokenizer_3B
# Load YouTube and LaTeX data
text_data_YT, context_embeddings_YT = load_youtube_data(data_dir, embedding_model, yt_chunk_tokens, yt_overlap_tokens)
text_data_Latex, context_embeddings_Latex = load_book_data(private_data_dir, embedding_model, latex_chunk_tokens, latex_overlap_tokens)
summary = load_summary(data_dir + '/KG_FEM_summary.json')
if 'question_answered' not in st.session_state:
st.session_state.question_answered = False
if 'context_by_video' not in st.session_state:
st.session_state.context_by_video = {}
if 'context_by_section' not in st.session_state:
st.session_state.context_by_section = {}
if 'answer' not in st.session_state:
st.session_state.answer = ""
if 'playing_video_id' not in st.session_state:
st.session_state.playing_video_id = None
if submit_button_placeholder.button("AI Answer", type="primary"):
if st.session_state.question == "":
st.markdown("")
st.write("Please enter a query. :smirk:")
st.session_state.question_answered = False
else:
with st.spinner("Finding relevant contexts..."):
if embedding_model == "all-MiniLM-L6-v2":
question_embedding = embed_question_sentence_transformer(st.session_state.question, model_name="all-MiniLM-L6-v2")
elif embedding_model == "text-embedding-3-small":
question_embedding = embed_question_openai(st.session_state.question, embedding_model)
initial_max_k = int(0.1 * context_embeddings_YT.shape[0])
idx_YT = fixed_knn_retrieval(question_embedding, context_embeddings_YT, top_k=top_k_YT, min_k=0)
idx_Latex = fixed_knn_retrieval(question_embedding, context_embeddings_Latex, top_k=top_k_Latex, min_k=0)
relevant_contexts_YT = sorted([text_data_YT[i] for i in idx_YT], key=lambda x: x['order'])
relevant_contexts_Latex = sorted([text_data_Latex[i] for i in idx_Latex], key=lambda x: x['order'])
st.session_state.context_by_video = {}
for context_item in relevant_contexts_YT:
video_id = context_item['video_id']
if video_id not in st.session_state.context_by_video:
st.session_state.context_by_video[video_id] = []
st.session_state.context_by_video[video_id].append(context_item)
st.session_state.context_by_section = {}
for context_item in relevant_contexts_Latex:
section_id = context_item['section']
if section_id not in st.session_state.context_by_section:
st.session_state.context_by_section[section_id] = []
st.session_state.context_by_section[section_id].append(context_item)
context = ''
for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1):
for context_item in contexts:
start_time = int(context_item['start'])
context += f'Video {i}, time: {sec_to_time(start_time)}:' + context_item['text'] + '\n\n'
st.session_state.yt_context = fix_latex(context)
for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1):
context += f'Section {i} ({section_id}):\n'
for context_item in contexts:
context += context_item['text'] + '\n\n'
with st.spinner("Answering the question..."):
#-------------------------
# getting expert answer
#-------------------------
if st.session_state.activate_expert:
if st.session_state.expert_model in ["LLaMA-TOMMI-1.0-11B", "LLaMA-3.2-11B"]:
if st.session_state.expert_model == "LLaMA-TOMMI-1.0-11B":
model_ = st.session_state.tommi_model
tokenizer_ = st.session_state.tommi_tokenizer
elif st.session_state.expert_model == "LLaMA-3.2-11B":
model_ = st.session_state.llama_model
tokenizer_ = st.session_state.llama_tokenizer
messages = [
{"role": "system", "content": get_expert_system_prompt()},
{"role": "user", "content": st.session_state.question}
]
expert_answer = generate_response(
model=model_,
tokenizer=tokenizer_,
messages=messages,
tokenizer_max_length=500,
do_sample=expert_do_sample,
temperature=expert_temperature if expert_do_sample else None,
top_k=expert_top_k if expert_do_sample else None,
top_p=expert_top_p if expert_do_sample else None,
num_beams=expert_num_beams if not expert_do_sample else 1,
max_new_tokens=expert_max_new_tokens
)
else: # openai
expert_answer = openai_domain_specific_answer_generation(
get_expert_system_prompt(),
st.session_state.question,
model=st.session_state.expert_model,
temperature=expert_api_temperature,
top_p=expert_api_top_p
)
st.session_state.expert_answer = fix_latex(expert_answer)
else:
st.session_state.expert_answer = 'No Expert Answer. Only use the context.'
#-------------------------
# synthesis responses
#-------------------------
if st.session_state.synthesis_model in ["LLaMA-3.2-3B", "LLaMA-3.2-11B"]:
if st.session_state.synthesis_model == "LLaMA-3.2-11B":
model_s = st.session_state.llama_model
tokenizer_s = st.session_state.llama_tokenizer
elif st.session_state.synthesis_model == "LLaMA-3.2-3B":
model_s = st.session_state.llama_model_3B
tokenizer_s = st.session_state.llama_tokenizer_3B
synthesis_prompt = f"""
Question:
{st.session_state.question}
Direct Answer:
{st.session_state.expert_answer}
Retrieved Context:
{context}
Final Answer:
"""
messages = [
{"role": "system", "content": get_synthesis_system_prompt("Finite Element Method")},
{"role": "user", "content": synthesis_prompt}
]
synthesis_answer = generate_response(
model=model_s,
tokenizer=tokenizer_s,
messages=messages,
tokenizer_max_length=30000,
do_sample=synthesis_do_sample,
temperature=synthesis_temperature if synthesis_do_sample else None,
top_k=synthesis_top_k if synthesis_do_sample else None,
top_p=synthesis_top_p if synthesis_do_sample else None,
num_beams=synthesis_num_beams if not synthesis_do_sample else 1,
max_new_tokens=synthesis_max_new_tokens
)
else:
synthesis_answer = openai_context_integration(
get_synthesis_system_prompt("Finite Element Method"),
st.session_state.question,
st.session_state.expert_answer,
context,
model=st.session_state.synthesis_model,
temperature=synthesis_api_temperature,
top_p=synthesis_api_top_p
)
# quick check after getting the answer
if synthesis_answer.split()[0] == "NOT_ENOUGH_INFO":
st.markdown("")
st.markdown("#### Query:")
st.markdown(fix_latex(st.session_state.question))
if show_expert_responce:
st.markdown("#### Initial Expert Answer:")
st.markdown(st.session_state.expert_answer)
st.markdown("#### Answer:")
st.write(":smiling_face_with_tear:")
st.markdown(synthesis_answer.split('NOT_ENOUGH_INFO')[1])
st.divider()
st.caption(get_disclaimer())
# st.caption("The AI Teaching Assistant project")
st.session_state.question_answered = False
st.stop()
else:
st.session_state.answer = fix_latex(synthesis_answer)
st.session_state.question_answered = True
if st.session_state.question_answered:
st.markdown("")
st.markdown("#### Query:")
st.markdown(fix_latex(st.session_state.question))
if show_expert_responce:
st.markdown("#### Initial Expert Answer:")
st.markdown(st.session_state.expert_answer)
st.markdown("#### Answer:")
st.markdown(st.session_state.answer)
if show_yt_context:
st.markdown("#### Retrieved lecture video transcripts:")
st.markdown(st.session_state.yt_context)
if top_k_YT > 0:
st.markdown("#### Retrieved content in lecture videos")
for i, (video_id, contexts) in enumerate(st.session_state.context_by_video.items(), start=1):
# with st.expander(f"**Video {i}** | {contexts[0]['title']}", expanded=True):
with st.container(border=True):
st.markdown(f"**Video {i} | {contexts[0]['title']}**")
video_placeholder = st.empty()
video_placeholder.markdown(get_youtube_embed(video_id, 0, 0), unsafe_allow_html=True)
st.markdown('')
with st.container(border=False):
st.markdown("Retrieved Times")
cols = st.columns([1 for i in range(len(contexts))] + [9 - len(contexts)])
for j, context_item in enumerate(contexts):
start_time = int(context_item['start'])
label = sec_to_time(start_time)
if cols[j].button(label, key=f"{video_id}_{start_time}"):
if st.session_state.playing_video_id is not None:
st.session_state.playing_video_id = None
video_placeholder.empty()
video_placeholder.markdown(get_youtube_embed(video_id, start_time, 1), unsafe_allow_html=True)
st.session_state.playing_video_id = video_id
with st.expander("Video Summary", expanded=False):
# st.write("##### Video Overview:")
st.markdown(summary[video_id])
if show_textbook and top_k_Latex > 0:
st.markdown("#### Retrieved content in textbook",help="The Finite Element Method: Linear Static and Dynamic Finite Element Analysis")
for i, (section_id, contexts) in enumerate(st.session_state.context_by_section.items(), start=1):
# with st.expander(f"**Section {i} | {section_id}**", expanded=True):
st.markdown(f"**Section {i} | {section_id}**")
for context_item in contexts:
st.markdown(context_item['text'])
st.divider()
st.markdown(" ")
st.divider()
st.caption(get_disclaimer()) |