Spaces:
Running
on
L4
Running
on
L4
Commit
·
49fe168
1
Parent(s):
c15c518
update settings
Browse files
app.py
CHANGED
@@ -48,41 +48,43 @@ st.markdown(" ")
|
|
48 |
# Sidebar for settings
|
49 |
with st.sidebar:
|
50 |
st.header("Settings")
|
51 |
-
# with st.container(border=True):
|
52 |
-
# Embedding model
|
53 |
-
|
54 |
-
model_name = st.selectbox("Choose content embedding model", [
|
55 |
-
"text-embedding-3-small",
|
56 |
-
# "text-embedding-3-large",
|
57 |
-
# "all-MiniLM-L6-v2",
|
58 |
-
# "all-mpnet-base-v2"
|
59 |
-
],
|
60 |
-
# help="""
|
61 |
-
# Select the embedding model to use for encoding the retrieved text data.
|
62 |
-
# Options include OpenAI's `text-embedding-3` models and two widely
|
63 |
-
# used SentenceTransformers models.
|
64 |
-
# """
|
65 |
-
)
|
66 |
|
67 |
-
with st.
|
68 |
-
st.
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
#
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
st.write(' ')
|
88 |
with st.expander('Expert model', expanded=False):
|
@@ -220,8 +222,7 @@ if submit_button_placeholder.button("AI Answer", type="primary"):
|
|
220 |
initial_max_k = int(0.1 * context_embeddings_YT.shape[0])
|
221 |
idx_YT = fixed_knn_retrieval(question_embedding, context_embeddings_YT, top_k=top_k_YT, min_k=0)
|
222 |
idx_Latex = fixed_knn_retrieval(question_embedding, context_embeddings_Latex, top_k=top_k_Latex, min_k=0)
|
223 |
-
|
224 |
-
with st.spinner("Answering the question..."):
|
225 |
relevant_contexts_YT = sorted([text_data_YT[i] for i in idx_YT], key=lambda x: x['order'])
|
226 |
relevant_contexts_Latex = sorted([text_data_Latex[i] for i in idx_Latex], key=lambda x: x['order'])
|
227 |
|
@@ -250,6 +251,7 @@ if submit_button_placeholder.button("AI Answer", type="primary"):
|
|
250 |
for context_item in contexts:
|
251 |
context += context_item['text'] + '\n\n'
|
252 |
|
|
|
253 |
#-------------------------
|
254 |
# getting expert answer
|
255 |
#-------------------------
|
@@ -301,11 +303,11 @@ if submit_button_placeholder.button("AI Answer", type="primary"):
|
|
301 |
#-------------------------
|
302 |
if st.session_state.synthesis_model in ["LLaMA-3.2-3B", "LLaMA-3.2-11B"]:
|
303 |
|
304 |
-
if st.session_state.
|
305 |
model_s = st.session_state.llama_model
|
306 |
tokenizer_s = st.session_state.llama_tokenizer
|
307 |
|
308 |
-
elif st.session_state.
|
309 |
model_s = st.session_state.llama_model_3B
|
310 |
tokenizer_s = st.session_state.llama_tokenizer_3B
|
311 |
|
|
|
48 |
# Sidebar for settings
|
49 |
with st.sidebar:
|
50 |
st.header("Settings")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
with st.expander('Embedding model',expanded=True):
|
53 |
+
# with st.container(border=True):
|
54 |
+
# Embedding model
|
55 |
+
|
56 |
+
model_name = st.selectbox("Choose content embedding model", [
|
57 |
+
"text-embedding-3-small",
|
58 |
+
# "text-embedding-3-large",
|
59 |
+
# "all-MiniLM-L6-v2",
|
60 |
+
# "all-mpnet-base-v2"
|
61 |
+
],
|
62 |
+
# help="""
|
63 |
+
# Select the embedding model to use for encoding the retrieved text data.
|
64 |
+
# Options include OpenAI's `text-embedding-3` models and two widely
|
65 |
+
# used SentenceTransformers models.
|
66 |
+
# """
|
67 |
+
)
|
68 |
+
|
69 |
+
with st.container(border=True):
|
70 |
+
st.write('**Video lectures**')
|
71 |
+
yt_token_choice = st.select_slider("Token per content", [256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="yt_token_len")
|
72 |
+
yt_chunk_tokens = yt_token_choice
|
73 |
+
yt_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[yt_chunk_tokens]
|
74 |
+
top_k_YT = st.slider("Number of relevant content pieces to retrieve", 0, yt_max_content, 4, key="yt_token_num")
|
75 |
+
yt_overlap_tokens = yt_chunk_tokens // 4
|
76 |
+
|
77 |
+
# st.divider()
|
78 |
+
with st.container(border=True):
|
79 |
+
st.write('**Textbook**')
|
80 |
+
show_textbook = False
|
81 |
+
# show_textbook = st.toggle("Show Textbook Content", value=False)
|
82 |
+
latex_token_choice = st.select_slider("Token per content", [128, 256, 512, 1024], value=256, help="Larger values lead to an increase in the length of each retrieved piece of content", key="latex_token_len")
|
83 |
+
latex_chunk_tokens = latex_token_choice
|
84 |
+
latex_max_content = {128: 32, 256: 16, 512: 8, 1024: 4}[latex_chunk_tokens]
|
85 |
+
top_k_Latex = st.slider("Number of relevant content pieces to retrieve", 0, latex_max_content, 4, key="latex_token_num")
|
86 |
+
# latex_overlap_tokens = latex_chunk_tokens // 4
|
87 |
+
latex_overlap_tokens = 0
|
88 |
|
89 |
st.write(' ')
|
90 |
with st.expander('Expert model', expanded=False):
|
|
|
222 |
initial_max_k = int(0.1 * context_embeddings_YT.shape[0])
|
223 |
idx_YT = fixed_knn_retrieval(question_embedding, context_embeddings_YT, top_k=top_k_YT, min_k=0)
|
224 |
idx_Latex = fixed_knn_retrieval(question_embedding, context_embeddings_Latex, top_k=top_k_Latex, min_k=0)
|
225 |
+
|
|
|
226 |
relevant_contexts_YT = sorted([text_data_YT[i] for i in idx_YT], key=lambda x: x['order'])
|
227 |
relevant_contexts_Latex = sorted([text_data_Latex[i] for i in idx_Latex], key=lambda x: x['order'])
|
228 |
|
|
|
251 |
for context_item in contexts:
|
252 |
context += context_item['text'] + '\n\n'
|
253 |
|
254 |
+
with st.spinner("Answering the question..."):
|
255 |
#-------------------------
|
256 |
# getting expert answer
|
257 |
#-------------------------
|
|
|
303 |
#-------------------------
|
304 |
if st.session_state.synthesis_model in ["LLaMA-3.2-3B", "LLaMA-3.2-11B"]:
|
305 |
|
306 |
+
if st.session_state.synthesis_model == "LLaMA-3.2-11B":
|
307 |
model_s = st.session_state.llama_model
|
308 |
tokenizer_s = st.session_state.llama_tokenizer
|
309 |
|
310 |
+
elif st.session_state.synthesis_model == "LLaMA-3.2-3B":
|
311 |
model_s = st.session_state.llama_model_3B
|
312 |
tokenizer_s = st.session_state.llama_tokenizer_3B
|
313 |
|