File size: 26,443 Bytes
979ad29 e97905c 9cf0d3b db33061 34226fa b27d93f 1d3da36 18d089c de67e48 979ad29 abb1239 e97905c 61526f3 de67e48 979ad29 de67e48 bd1b497 18d089c de67e48 18d089c de67e48 bd1b497 a5a718a e813605 de67e48 c9b656e 979ad29 c30da33 521a764 c30da33 3b1505d 521a764 3b1505d 521a764 3b1505d 521a764 3b1505d 521a764 3b1505d 521a764 3b1505d 521a764 61526f3 3b1505d 61526f3 3b1505d 61526f3 3b1505d 61526f3 521a764 3b1505d 521a764 c30da33 521a764 c30da33 521a764 c30da33 61526f3 c30da33 a1ae61d 4efca8f 61526f3 4efca8f 61526f3 4efca8f 82773a4 4efca8f 4709de1 61526f3 4efca8f 61526f3 c30da33 61526f3 c30da33 61526f3 c30da33 61526f3 c30da33 61526f3 c30da33 61526f3 c30da33 4efca8f 61526f3 4efca8f c30da33 4efca8f 82773a4 c30da33 4efca8f 61526f3 4efca8f c30da33 61526f3 c30da33 82773a4 c30da33 61526f3 4efca8f 61526f3 c30da33 979ad29 abb1239 979ad29 abb1239 979ad29 abb1239 979ad29 abb1239 979ad29 abb1239 979ad29 abb1239 979ad29 abb1239 979ad29 abb1239 979ad29 abb1239 979ad29 abb1239 979ad29 abb1239 979ad29 abb1239 979ad29 abb1239 979ad29 abb1239 979ad29 abb1239 979ad29 c30da33 61526f3 c30da33 628f747 de67e48 e813605 a5a718a 25032a9 e813605 25032a9 a5a718a c9b656e a5a718a e813605 a5a718a de67e48 a5a718a e813605 61526f3 c9b656e db33061 8fedb8b c9b656e 4efca8f e2aea7d 979ad29 e2aea7d 61526f3 abb1239 e2aea7d 979ad29 e2aea7d 09f58ca 25032a9 c9b656e db33061 25032a9 db33061 c9b656e db33061 36aebd6 18d089c 61526f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
from __future__ import annotations
import os
import re
import random
import string
import uuid
import json
import logging
import asyncio
import time
from collections import defaultdict
from typing import List, Dict, Any, Optional, Union, AsyncGenerator
from datetime import datetime # Essential for timestamping
from aiohttp import ClientSession, ClientResponseError
from fastapi import FastAPI, HTTPException, Request, Depends, Header
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# Load environment variables
API_KEYS = os.getenv('API_KEYS', '').split(',') # Comma-separated API keys
RATE_LIMIT = int(os.getenv('RATE_LIMIT', '60')) # Requests per minute
if not API_KEYS or API_KEYS == ['']:
logger.error("No API keys found. Please set the API_KEYS environment variable.")
raise Exception("API_KEYS environment variable not set.")
# Simple in-memory rate limiter based solely on IP addresses
rate_limit_store = defaultdict(lambda: {"count": 0, "timestamp": time.time()})
# Define cleanup interval and window
CLEANUP_INTERVAL = 60 # seconds
RATE_LIMIT_WINDOW = 60 # seconds
# Define ImageResponse and base classes if not defined elsewhere
class ImageResponse(BaseModel):
images: str
alt: str
class AsyncGeneratorProvider:
pass
class ProviderModelMixin:
pass
class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
label = "Blackbox AI"
url = "https://www.blackbox.ai"
api_endpoint = "https://www.blackbox.ai/api/chat"
working = True
supports_gpt_4 = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'blackboxai'
image_models = ['ImageGeneration']
models = [
default_model,
'blackboxai-pro',
*image_models,
"llama-3.1-8b",
'llama-3.1-70b',
'llama-3.1-405b',
'gpt-4o',
'gemini-pro',
'gemini-1.5-flash',
'claude-sonnet-3.5',
'PythonAgent',
'JavaAgent',
'JavaScriptAgent',
'HTMLAgent',
'GoogleCloudAgent',
'AndroidDeveloper',
'SwiftDeveloper',
'Next.jsAgent',
'MongoDBAgent',
'PyTorchAgent',
'ReactAgent',
'XcodeAgent',
'AngularJSAgent',
]
agentMode = {
'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
}
trendingAgentMode = {
"blackboxai": {},
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
'PythonAgent': {'mode': True, 'id': "Python Agent"},
'JavaAgent': {'mode': True, 'id': "Java Agent"},
'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
'ReactAgent': {'mode': True, 'id': "React Agent"},
'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"},
}
userSelectedModel = {
"gpt-4o": "gpt-4o",
"gemini-pro": "gemini-pro",
'claude-sonnet-3.5': "claude-sonnet-3.5",
}
model_prefixes = {
'gpt-4o': '@GPT-4o',
'gemini-pro': '@Gemini-PRO',
'claude-sonnet-3.5': '@Claude-Sonnet-3.5',
'PythonAgent': '@Python Agent',
'JavaAgent': '@Java Agent',
'JavaScriptAgent': '@JavaScript Agent',
'HTMLAgent': '@HTML Agent',
'GoogleCloudAgent': '@Google Cloud Agent',
'AndroidDeveloper': '@Android Developer',
'SwiftDeveloper': '@Swift Developer',
'Next.jsAgent': '@Next.js Agent',
'MongoDBAgent': '@MongoDB Agent',
'PyTorchAgent': '@PyTorch Agent',
'ReactAgent': '@React Agent',
'XcodeAgent': '@Xcode Agent',
'AngularJSAgent': '@AngularJS Agent',
'blackboxai-pro': '@BLACKBOXAI-PRO',
'ImageGeneration': '@Image Generation',
}
model_referers = {
"blackboxai": "/?model=blackboxai",
"gpt-4o": "/?model=gpt-4o",
"gemini-pro": "/?model=gemini-pro",
"claude-sonnet-3.5": "/?model=claude-sonnet-3.5",
}
model_aliases = {
"gemini-flash": "gemini-1.5-flash",
"claude-3.5-sonnet": "claude-sonnet-3.5",
"flux": "ImageGeneration",
}
@classmethod
def get_model(cls, model: str) -> str:
if model in cls.models:
return model
elif model in cls.model_aliases:
return cls.model_aliases[model]
else:
return cls.default_model
@staticmethod
def generate_random_string(length: int = 7) -> str:
characters = string.ascii_letters + string.digits
return ''.join(random.choices(characters, k=length))
@staticmethod
def generate_next_action() -> str:
return uuid.uuid4().hex
@staticmethod
def generate_next_router_state_tree() -> str:
router_state = [
"",
{
"children": [
"(chat)",
{
"children": [
"__PAGE__",
{}
]
}
]
},
None,
None,
True
]
return json.dumps(router_state)
@staticmethod
def clean_response(text: str) -> str:
pattern = r'^\$\@\$v=undefined-rv1\$\@\$'
cleaned_text = re.sub(pattern, '', text)
return cleaned_text
@classmethod
async def generate_response(
cls,
model: str,
messages: List[Dict[str, str]],
proxy: Optional[str] = None,
**kwargs
) -> str:
model = cls.get_model(model)
chat_id = cls.generate_random_string()
next_action = cls.generate_next_action()
next_router_state_tree = cls.generate_next_router_state_tree()
agent_mode = cls.agentMode.get(model, {})
trending_agent_mode = cls.trendingAgentMode.get(model, {})
prefix = cls.model_prefixes.get(model, "")
formatted_prompt = ""
for message in messages:
role = message.get('role', '').capitalize()
content = message.get('content', '')
if role and content:
formatted_prompt += f"{role}: {content}\n"
if prefix:
formatted_prompt = f"{prefix} {formatted_prompt}".strip()
referer_path = cls.model_referers.get(model, f"/?model={model}")
referer_url = f"{cls.url}{referer_path}"
common_headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.9',
'cache-control': 'no-cache',
'origin': cls.url,
'pragma': 'no-cache',
'priority': 'u=1, i',
'sec-ch-ua': '"Chromium";v="129", "Not=A?Brand";v="8"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Linux"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) '
'AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/129.0.0.0 Safari/537.36'
}
headers_api_chat = {
'Content-Type': 'application/json',
'Referer': referer_url
}
headers_api_chat_combined = {**common_headers, **headers_api_chat}
payload_api_chat = {
"messages": [
{
"id": chat_id,
"content": formatted_prompt,
"role": "user"
}
],
"id": chat_id,
"previewToken": None,
"userId": None,
"codeModelMode": True,
"agentMode": agent_mode,
"trendingAgentMode": trending_agent_mode,
"isMicMode": False,
"userSystemPrompt": None,
"maxTokens": 1024,
"playgroundTopP": 0.9,
"playgroundTemperature": 0.5,
"isChromeExt": False,
"githubToken": None,
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"visitFromDelta": False,
"mobileClient": False,
"webSearchMode": False,
"userSelectedModel": cls.userSelectedModel.get(model, model)
}
async with ClientSession(headers=common_headers) as session:
try:
async with session.post(
cls.api_endpoint,
headers=headers_api_chat_combined,
json=payload_api_chat,
proxy=proxy
) as response_api_chat:
response_api_chat.raise_for_status()
text = await response_api_chat.text()
cleaned_response = cls.clean_response(text)
return cleaned_response
except ClientResponseError as e:
error_text = f"Error {e.status}: {e.message}"
try:
error_response = await e.response.text()
cleaned_error = cls.clean_response(error_response)
error_text += f" - {cleaned_error}"
except Exception:
pass
return error_text
except Exception as e:
return f"Unexpected error during /api/chat request: {str(e)}"
@classmethod
async def create_async_generator(
cls,
model: str,
messages: List[Dict[str, str]],
proxy: Optional[str] = None,
websearch: bool = False,
**kwargs
) -> AsyncGenerator[Union[str, ImageResponse], None]:
"""
Creates an asynchronous generator for streaming responses from Blackbox AI.
Parameters:
model (str): Model to use for generating responses.
messages (List[Dict[str, str]]): Message history.
proxy (Optional[str]): Proxy URL, if needed.
websearch (bool): Enables or disables web search mode.
**kwargs: Additional keyword arguments.
Yields:
Union[str, ImageResponse]: Segments of the generated response or ImageResponse objects.
"""
logger.debug("Starting async generator for model: %s", model)
model = cls.get_model(model)
chat_id = cls.generate_random_string()
next_action = cls.generate_next_action()
next_router_state_tree = cls.generate_next_router_state_tree()
agent_mode = cls.agentMode.get(model, {})
trending_agent_mode = cls.trendingAgentMode.get(model, {})
prefix = cls.model_prefixes.get(model, "")
formatted_prompt = ""
for message in messages:
role = message.get('role', '').capitalize()
content = message.get('content', '')
if role and content:
formatted_prompt += f"{role}: {content}\n"
if prefix:
formatted_prompt = f"{prefix} {formatted_prompt}".strip()
referer_path = cls.model_referers.get(model, f"/?model={model}")
referer_url = f"{cls.url}{referer_path}"
common_headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.9',
'cache-control': 'no-cache',
'origin': cls.url,
'pragma': 'no-cache',
'priority': 'u=1, i',
'sec-ch-ua': '"Chromium";v="129", "Not=A?Brand";v="8"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Linux"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) '
'AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/129.0.0.0 Safari/537.36'
}
headers_api_chat = {
'Content-Type': 'application/json',
'Referer': referer_url
}
headers_api_chat_combined = {**common_headers, **headers_api_chat}
payload_api_chat = {
"messages": [
{
"id": chat_id,
"content": formatted_prompt,
"role": "user"
}
],
"id": chat_id,
"previewToken": None,
"userId": None,
"codeModelMode": True,
"agentMode": agent_mode,
"trendingAgentMode": trending_agent_mode,
"isMicMode": False,
"userSystemPrompt": None,
"maxTokens": 1024,
"playgroundTopP": 0.9,
"playgroundTemperature": 0.5,
"isChromeExt": False,
"githubToken": None,
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"visitFromDelta": False,
"mobileClient": False,
"webSearchMode": websearch,
"userSelectedModel": cls.userSelectedModel.get(model, model)
}
headers_chat = {
'Accept': 'text/x-component',
'Content-Type': 'text/plain;charset=UTF-8',
'Referer': f'{cls.url}/chat/{chat_id}?model={model}',
'next-action': next_action,
'next-router-state-tree': next_router_state_tree,
'next-url': '/'
}
headers_chat_combined = {**common_headers, **headers_chat}
data_chat = '[]'
async with ClientSession(headers=common_headers) as session:
try:
logger.debug("Sending POST request to Blackbox API at %s", cls.api_endpoint)
async with session.post(
cls.api_endpoint,
headers=headers_api_chat_combined,
json=payload_api_chat,
proxy=proxy
) as response_api_chat:
response_api_chat.raise_for_status()
text = await response_api_chat.text()
cleaned_response = cls.clean_response(text)
logger.debug("Received response from Blackbox API: %s", cleaned_response)
# Test yield to verify streaming works
yield "Streaming response started...\n"
if model in cls.image_models:
match = re.search(r'!\[.*?\]\((https?://[^\)]+)\)', cleaned_response)
if match:
image_url = match.group(1)
image_response = ImageResponse(images=image_url, alt="Generated Image")
yield image_response.json() + "\n"
else:
yield cleaned_response + "\n"
else:
if websearch:
match = re.search(r'\$~~~\$(.*?)\$~~~\$', cleaned_response, re.DOTALL)
if match:
source_part = match.group(1).strip()
answer_part = cleaned_response[match.end():].strip()
try:
sources = json.loads(source_part)
source_formatted = "**Source:**\n"
for item in sources:
title = item.get('title', 'No Title')
link = item.get('link', '#')
position = item.get('position', '')
source_formatted += f"{position}. [{title}]({link})\n"
final_response = f"{answer_part}\n\n{source_formatted}"
except json.JSONDecodeError:
final_response = f"{answer_part}\n\nSource information is unavailable."
else:
final_response = cleaned_response
else:
if '$~~~$' in cleaned_response:
final_response = cleaned_response.split('$~~~$')[0].strip()
else:
final_response = cleaned_response
yield final_response + "\n"
except ClientResponseError as e:
error_text = f"Error {e.status}: {e.message}"
logger.error("ClientResponseError: %s", error_text)
try:
error_response = await e.response.text()
cleaned_error = cls.clean_response(error_response)
error_text += f" - {cleaned_error}"
except Exception:
pass
yield f"{error_text}\n"
except Exception as e:
error_text = f"Unexpected error during /api/chat request: {str(e)}"
logger.error("Exception: %s", error_text)
yield f"{error_text}\n"
# Test yield after API call
yield "Streaming response ended.\n"
chat_url = f'{cls.url}/chat/{chat_id}?model={model}'
try:
logger.debug("Sending POST request to Chat URL: %s", chat_url)
async with session.post(
chat_url,
headers=headers_chat_combined,
data=data_chat,
proxy=proxy
) as response_chat:
response_chat.raise_for_status()
logger.debug("Chat POST request successful.")
except ClientResponseError as e:
error_text = f"Error {e.status}: {e.message}"
logger.error("ClientResponseError on chat POST: %s", error_text)
yield f"{error_text}\n"
except Exception as e:
error_text = f"Unexpected error during /chat/{chat_id} request: {str(e)}"
logger.error("Exception on chat POST: %s", error_text)
yield f"{error_text}\n"
# Custom exception for model not working
class ModelNotWorkingException(Exception):
def __init__(self, model: str):
self.model = model
self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
super().__init__(self.message)
async def cleanup_rate_limit_stores():
"""
Periodically cleans up stale entries in the rate_limit_store to prevent memory bloat.
"""
while True:
current_time = time.time()
ips_to_delete = [ip for ip, value in rate_limit_store.items() if current_time - value["timestamp"] > RATE_LIMIT_WINDOW * 2]
for ip in ips_to_delete:
del rate_limit_store[ip]
logger.debug(f"Cleaned up rate_limit_store for IP: {ip}")
await asyncio.sleep(CLEANUP_INTERVAL)
async def rate_limiter_per_ip(request: Request):
"""
Rate limiter that enforces a limit based on the client's IP address.
"""
client_ip = request.client.host
current_time = time.time()
# Initialize or update the count and timestamp
if current_time - rate_limit_store[client_ip]["timestamp"] > RATE_LIMIT_WINDOW:
rate_limit_store[client_ip] = {"count": 1, "timestamp": current_time}
else:
if rate_limit_store[client_ip]["count"] >= RATE_LIMIT:
logger.warning(f"Rate limit exceeded for IP address: {client_ip}")
raise HTTPException(status_code=429, detail='Rate limit exceeded for IP address | NiansuhAI')
rate_limit_store[client_ip]["count"] += 1
async def get_api_key(request: Request, authorization: str = Header(None)) -> str:
"""
Dependency to extract and validate the API key from the Authorization header.
"""
client_ip = request.client.host
if authorization is None or not authorization.startswith('Bearer '):
logger.warning(f"Invalid or missing authorization header from IP: {client_ip}")
raise HTTPException(status_code=401, detail='Invalid authorization header format')
api_key = authorization[7:]
if api_key not in API_KEYS:
logger.warning(f"Invalid API key attempted: {api_key} from IP: {client_ip}")
raise HTTPException(status_code=401, detail='Invalid API key')
return api_key
# FastAPI app setup
app = FastAPI()
# Add the cleanup task when the app starts
@app.on_event("startup")
async def startup_event():
asyncio.create_task(cleanup_rate_limit_stores())
logger.info("Started rate limit store cleanup task.")
# Middleware to enhance security and enforce Content-Type for specific endpoints
@app.middleware("http")
async def security_middleware(request: Request, call_next):
client_ip = request.client.host
# Enforce that POST requests to /v1/chat/completions must have Content-Type: application/json
if request.method == "POST" and request.url.path == "/v1/chat/completions":
content_type = request.headers.get("Content-Type")
if content_type != "application/json":
logger.warning(f"Invalid Content-Type from IP: {client_ip} for path: {request.url.path}")
return JSONResponse(
status_code=400,
content={
"error": {
"message": "Content-Type must be application/json",
"type": "invalid_request_error",
"param": None,
"code": None
}
},
)
response = await call_next(request)
return response
# Request Models
class Message(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
model: str
messages: List[Message]
temperature: Optional[float] = 1.0
top_p: Optional[float] = 1.0
n: Optional[int] = 1
max_tokens: Optional[int] = None
presence_penalty: Optional[float] = 0.0
frequency_penalty: Optional[float] = 0.0
logit_bias: Optional[Dict[str, float]] = None
user: Optional[str] = None
@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip)])
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
client_ip = req.client.host
# Redact user messages only for logging purposes
redacted_messages = [{"role": msg.role, "content": "[redacted]"} for msg in request.messages]
logger.info(f"Received chat completions request from API key: {api_key} | IP: {client_ip} | Model: {request.model} | Messages: {redacted_messages}")
try:
# Validate that the requested model is available
if request.model not in Blackbox.models and request.model not in Blackbox.model_aliases:
logger.warning(f"Attempt to use unavailable model: {request.model} from IP: {client_ip}")
raise HTTPException(status_code=400, detail="Requested model is not available.")
# Create an asynchronous generator for streaming response
generator = Blackbox.create_async_generator(
model=request.model,
messages=[{"role": msg.role, "content": msg.content} for msg in request.messages],
proxy=request.headers.get('Proxy'), # Assuming proxy info is passed via headers
websearch=request.query_params.get('websearch', 'false').lower() == 'true'
)
logger.info(f"Started streaming response for API key: {api_key} | IP: {client_ip}")
return StreamingResponse(generator, media_type="text/event-stream")
except ModelNotWorkingException as e:
logger.warning(f"Model not working: {e} | IP: {client_ip}")
raise HTTPException(status_code=503, detail=str(e))
except HTTPException as he:
logger.warning(f"HTTPException: {he.detail} | IP: {client_ip}")
raise he
except Exception as e:
logger.exception(f"An unexpected error occurred while processing the chat completions request from IP: {client_ip}.")
raise HTTPException(status_code=500, detail=str(e))
# Endpoint: GET /v1/models
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
async def get_models(req: Request):
client_ip = req.client.host
logger.info(f"Fetching available models from IP: {client_ip}")
return {"data": [{"id": model, "object": "model"} for model in Blackbox.models]}
# Endpoint: GET /v1/health
@app.get("/v1/health", dependencies=[Depends(rate_limiter_per_ip)])
async def health_check(req: Request):
client_ip = req.client.host
logger.info(f"Health check requested from IP: {client_ip}")
return {"status": "ok"}
# Custom exception handler to match OpenAI's error format
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, exc: HTTPException):
client_ip = request.client.host
logger.error(f"HTTPException: {exc.detail} | Path: {request.url.path} | IP: {client_ip}")
return JSONResponse(
status_code=exc.status_code,
content={
"error": {
"message": exc.detail,
"type": "invalid_request_error",
"param": None,
"code": None
}
},
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|