muskangoyal06 commited on
Commit
ff587c5
·
verified ·
1 Parent(s): 445566f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -1,12 +1,14 @@
1
  import torch
2
  from ultralytics.nn.tasks import DetectionModel
 
3
 
4
- # Allow the DetectionModel global for safe unpickling (only if you trust the source!)
5
- torch.serialization.add_safe_globals([DetectionModel])
6
 
7
  from huggingface_hub import hf_hub_download
8
  from ultralytics import YOLO
9
  import gradio as gr
 
10
 
11
  # Download the weights file (e.g., "best.pt") from the Hugging Face Hub
12
  weights_path = hf_hub_download(
@@ -18,9 +20,9 @@ weights_path = hf_hub_download(
18
  model = YOLO(weights_path)
19
 
20
  def predict_leaves(image_path):
21
- # Run the prediction on the provided image path
22
  results = model.predict(source=image_path, save=True)
23
- # Count the number of detected leaves (assuming results[0].boxes is available)
24
  count = len(results[0].boxes)
25
  return f"Detected leaves: {count}"
26
 
 
1
  import torch
2
  from ultralytics.nn.tasks import DetectionModel
3
+ from torch.nn.modules.container import Sequential
4
 
5
+ # Whitelist safe globals for unpickling (only do this if you trust the model checkpoint)
6
+ torch.serialization.add_safe_globals([DetectionModel, Sequential])
7
 
8
  from huggingface_hub import hf_hub_download
9
  from ultralytics import YOLO
10
  import gradio as gr
11
+ from PIL import Image
12
 
13
  # Download the weights file (e.g., "best.pt") from the Hugging Face Hub
14
  weights_path = hf_hub_download(
 
20
  model = YOLO(weights_path)
21
 
22
  def predict_leaves(image_path):
23
+ # Run prediction on the given image
24
  results = model.predict(source=image_path, save=True)
25
+ # Count the number of detected leaves using the first result
26
  count = len(results[0].boxes)
27
  return f"Detected leaves: {count}"
28