Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from huggingface_hub import hf_hub_download
|
2 |
from ultralytics import YOLO
|
3 |
import gradio as gr
|
4 |
|
5 |
# Download the weights file (e.g., "best.pt") from the Hugging Face Hub
|
6 |
weights_path = hf_hub_download(
|
7 |
-
repo_id="foduucom/plant-leaf-detection-and-classification",
|
8 |
filename="best.pt"
|
9 |
)
|
10 |
|
11 |
-
# Load the model using the local weights file
|
12 |
model = YOLO(weights_path)
|
13 |
|
14 |
def predict_leaves(image_path):
|
15 |
-
# Run the
|
16 |
results = model.predict(source=image_path, save=True)
|
17 |
-
# Count the number of detected leaves (
|
18 |
count = len(results[0].boxes)
|
19 |
return f"Detected leaves: {count}"
|
20 |
|
21 |
-
# Create a Gradio interface
|
22 |
iface = gr.Interface(
|
23 |
fn=predict_leaves,
|
24 |
inputs=gr.Image(type="filepath"),
|
|
|
1 |
+
import torch
|
2 |
+
from ultralytics.nn.tasks import DetectionModel
|
3 |
+
|
4 |
+
# Allow the DetectionModel global for safe unpickling (only if you trust the source!)
|
5 |
+
torch.serialization.add_safe_globals([DetectionModel])
|
6 |
+
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
from ultralytics import YOLO
|
9 |
import gradio as gr
|
10 |
|
11 |
# Download the weights file (e.g., "best.pt") from the Hugging Face Hub
|
12 |
weights_path = hf_hub_download(
|
13 |
+
repo_id="foduucom/plant-leaf-detection-and-classification",
|
14 |
filename="best.pt"
|
15 |
)
|
16 |
|
17 |
+
# Load the YOLO model using the local weights file
|
18 |
model = YOLO(weights_path)
|
19 |
|
20 |
def predict_leaves(image_path):
|
21 |
+
# Run the prediction on the provided image path
|
22 |
results = model.predict(source=image_path, save=True)
|
23 |
+
# Count the number of detected leaves (assuming results[0].boxes is available)
|
24 |
count = len(results[0].boxes)
|
25 |
return f"Detected leaves: {count}"
|
26 |
|
27 |
+
# Create a Gradio interface for your app
|
28 |
iface = gr.Interface(
|
29 |
fn=predict_leaves,
|
30 |
inputs=gr.Image(type="filepath"),
|