muskangoyal06 commited on
Commit
f87cf07
·
verified ·
1 Parent(s): ff587c5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -1,28 +1,29 @@
1
  import torch
2
  from ultralytics.nn.tasks import DetectionModel
3
  from torch.nn.modules.container import Sequential
 
4
 
5
- # Whitelist safe globals for unpickling (only do this if you trust the model checkpoint)
6
- torch.serialization.add_safe_globals([DetectionModel, Sequential])
7
 
8
  from huggingface_hub import hf_hub_download
9
  from ultralytics import YOLO
10
  import gradio as gr
11
  from PIL import Image
12
 
13
- # Download the weights file (e.g., "best.pt") from the Hugging Face Hub
14
  weights_path = hf_hub_download(
15
  repo_id="foduucom/plant-leaf-detection-and-classification",
16
  filename="best.pt"
17
  )
18
 
19
- # Load the YOLO model using the local weights file
20
  model = YOLO(weights_path)
21
 
22
  def predict_leaves(image_path):
23
- # Run prediction on the given image
24
  results = model.predict(source=image_path, save=True)
25
- # Count the number of detected leaves using the first result
26
  count = len(results[0].boxes)
27
  return f"Detected leaves: {count}"
28
 
 
1
  import torch
2
  from ultralytics.nn.tasks import DetectionModel
3
  from torch.nn.modules.container import Sequential
4
+ from ultralytics.nn.modules import Conv # Import Conv
5
 
6
+ # Whitelist safe globals for unpickling (only if you trust the model checkpoint!)
7
+ torch.serialization.add_safe_globals([DetectionModel, Sequential, Conv])
8
 
9
  from huggingface_hub import hf_hub_download
10
  from ultralytics import YOLO
11
  import gradio as gr
12
  from PIL import Image
13
 
14
+ # Download the weights file (ensure the filename is correct)
15
  weights_path = hf_hub_download(
16
  repo_id="foduucom/plant-leaf-detection-and-classification",
17
  filename="best.pt"
18
  )
19
 
20
+ # Load the model using the local weights file
21
  model = YOLO(weights_path)
22
 
23
  def predict_leaves(image_path):
24
+ # Run prediction on the provided image
25
  results = model.predict(source=image_path, save=True)
26
+ # Count the number of detected leaves (using the first result)
27
  count = len(results[0].boxes)
28
  return f"Detected leaves: {count}"
29