Spaces:
Running
Running
import gradio as gr | |
from ultralyticsplus import YOLO, render_result | |
import cv2 | |
import time | |
import torch | |
# -------------------------- | |
# System Checks & Optimization | |
# -------------------------- | |
print("\n" + "="*40) | |
print("System Configuration Check:") | |
print(f"PyTorch Version: {torch.__version__}") | |
print(f"CUDA Available: {torch.cuda.is_available()}") | |
print(f"CUDA Device Count: {torch.cuda.device_count()}") | |
if torch.cuda.is_available(): | |
print(f"Using GPU: {torch.cuda.get_device_name(0)}") | |
else: | |
print("Using CPU - For better performance, consider using a GPU environment") | |
print("="*40 + "\n") | |
# -------------------------- | |
# Model Configuration | |
# -------------------------- | |
# Load model with performance optimizations | |
model = YOLO('foduucom/plant-leaf-detection-and-classification') | |
# Configure model parameters | |
model_params = { | |
'conf': 0.25, | |
'iou': 0.45, | |
'imgsz': 640, | |
'device': 'cuda' if torch.cuda.is_available() else 'cpu', | |
'half': True if torch.cuda.is_available() else False # FP16 acceleration | |
} | |
model.overrides.update(model_params) | |
# Warmup model with dummy input | |
print("Performing model warmup...") | |
dummy_input = torch.randn(1, 3, 640, 640).to(model_params['device']) | |
if model_params['half']: | |
dummy_input = dummy_input.half() | |
model.predict(dummy_input, verbose=False) | |
print("Model warmup complete!\n") | |
# -------------------------- | |
# Image Processing Pipeline | |
# -------------------------- | |
def preprocess_image(image): | |
"""Optimized image preprocessing""" | |
# Convert RGB to BGR | |
img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
# Resize maintaining aspect ratio | |
max_size = 1280 | |
h, w = img.shape[:2] | |
scale = min(max_size/h, max_size/w) | |
img = cv2.resize(img, (int(w*scale), int(h*scale)), | |
interpolation=cv2.INTER_LINEAR) | |
return img | |
# -------------------------- | |
# Detection Function | |
# -------------------------- | |
def detect_leaves(image): | |
try: | |
start_time = time.time() | |
# Step 1: Preprocessing | |
preprocess_start = time.time() | |
img = preprocess_image(image) | |
print(f"Preprocessing time: {time.time() - preprocess_start:.2f}s") | |
# Step 2: Prediction | |
predict_start = time.time() | |
results = model.predict( | |
source=img, | |
verbose=False, | |
stream=False, # Disable streaming mode | |
augment=False # Disable TTA for speed | |
) | |
print(f"Prediction time: {time.time() - predict_start:.2f}s") | |
# Step 3: Postprocessing | |
postprocess_start = time.time() | |
num_leaves = len(results[0].boxes) | |
rendered_img = render_result(model=model, image=img, result=results[0]) | |
rendered_img = cv2.cvtColor(rendered_img, cv2.COLOR_BGR2RGB) | |
print(f"Postprocessing time: {time.time() - postprocess_start:.2f}s") | |
total_time = time.time() - start_time | |
print(f"\nTotal processing time: {total_time:.2f}s") | |
print(f"Detected leaves: {num_leaves}") | |
print("-"*50) | |
return rendered_img, num_leaves | |
except Exception as e: | |
print(f"Error processing image: {str(e)}") | |
return None, 0 | |
# -------------------------- | |
# Gradio Interface | |
# -------------------------- | |
with gr.Blocks(title="Leaf Detection", theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# π Real-Time Plant Leaf Detection") | |
gr.Markdown("Upload a plant image to analyze leaf count and health") | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", type="numpy") | |
output_image = gr.Image(label="Detection Results", width=600) | |
with gr.Row(): | |
leaf_count = gr.Number(label="Detected Leaves", precision=0) | |
process_btn = gr.Button("Analyze Image", variant="primary") | |
progress = gr.Textbox(label="Processing Status", visible=True) | |
process_btn.click( | |
fn=detect_leaves, | |
inputs=[input_image], | |
outputs=[output_image, leaf_count] | |
) | |
if __name__ == "__main__": | |
demo.launch( | |
server_port=7860, | |
show_error=True, | |
share=False | |
) |