Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,49 +2,128 @@ import gradio as gr
|
|
2 |
from ultralyticsplus import YOLO, render_result
|
3 |
import cv2
|
4 |
import time
|
|
|
5 |
|
6 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
model = YOLO('foduucom/plant-leaf-detection-and-classification')
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
'conf': 0.25,
|
12 |
'iou': 0.45,
|
13 |
'imgsz': 640,
|
14 |
-
'device': '
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
|
|
17 |
def detect_leaves(image):
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
-
|
27 |
-
num_leaves = len(results[0].boxes)
|
28 |
-
rendered_img = render_result(model=model, image=img, result=results[0])
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
fn=detect_leaves,
|
36 |
-
inputs=gr.Image(label="Plant Image"),
|
37 |
-
outputs=[
|
38 |
-
gr.Image(label="Detection Result", width=600),
|
39 |
-
gr.Number(label="Leaves Count")
|
40 |
-
],
|
41 |
-
title="π Leaf Detection",
|
42 |
-
flagging_mode="never" # Updated from allow_flagging
|
43 |
-
)
|
44 |
|
45 |
if __name__ == "__main__":
|
46 |
-
|
47 |
server_port=7860,
|
48 |
-
|
49 |
-
|
50 |
)
|
|
|
2 |
from ultralyticsplus import YOLO, render_result
|
3 |
import cv2
|
4 |
import time
|
5 |
+
import torch
|
6 |
|
7 |
+
# --------------------------
|
8 |
+
# System Checks & Optimization
|
9 |
+
# --------------------------
|
10 |
+
print("\n" + "="*40)
|
11 |
+
print("System Configuration Check:")
|
12 |
+
print(f"PyTorch Version: {torch.__version__}")
|
13 |
+
print(f"CUDA Available: {torch.cuda.is_available()}")
|
14 |
+
print(f"CUDA Device Count: {torch.cuda.device_count()}")
|
15 |
+
if torch.cuda.is_available():
|
16 |
+
print(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
17 |
+
else:
|
18 |
+
print("Using CPU - For better performance, consider using a GPU environment")
|
19 |
+
print("="*40 + "\n")
|
20 |
+
|
21 |
+
# --------------------------
|
22 |
+
# Model Configuration
|
23 |
+
# --------------------------
|
24 |
+
# Load model with performance optimizations
|
25 |
model = YOLO('foduucom/plant-leaf-detection-and-classification')
|
26 |
|
27 |
+
# Configure model parameters
|
28 |
+
model_params = {
|
29 |
'conf': 0.25,
|
30 |
'iou': 0.45,
|
31 |
'imgsz': 640,
|
32 |
+
'device': 'cuda' if torch.cuda.is_available() else 'cpu',
|
33 |
+
'half': True if torch.cuda.is_available() else False # FP16 acceleration
|
34 |
+
}
|
35 |
+
model.overrides.update(model_params)
|
36 |
+
|
37 |
+
# Warmup model with dummy input
|
38 |
+
print("Performing model warmup...")
|
39 |
+
dummy_input = torch.randn(1, 3, 640, 640).to(model_params['device'])
|
40 |
+
if model_params['half']:
|
41 |
+
dummy_input = dummy_input.half()
|
42 |
+
model.predict(dummy_input, verbose=False)
|
43 |
+
print("Model warmup complete!\n")
|
44 |
+
|
45 |
+
# --------------------------
|
46 |
+
# Image Processing Pipeline
|
47 |
+
# --------------------------
|
48 |
+
def preprocess_image(image):
|
49 |
+
"""Optimized image preprocessing"""
|
50 |
+
# Convert RGB to BGR
|
51 |
+
img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
52 |
+
|
53 |
+
# Resize maintaining aspect ratio
|
54 |
+
max_size = 1280
|
55 |
+
h, w = img.shape[:2]
|
56 |
+
scale = min(max_size/h, max_size/w)
|
57 |
+
img = cv2.resize(img, (int(w*scale), int(h*scale)),
|
58 |
+
interpolation=cv2.INTER_LINEAR)
|
59 |
+
return img
|
60 |
|
61 |
+
# --------------------------
|
62 |
+
# Detection Function
|
63 |
+
# --------------------------
|
64 |
def detect_leaves(image):
|
65 |
+
try:
|
66 |
+
start_time = time.time()
|
67 |
+
|
68 |
+
# Step 1: Preprocessing
|
69 |
+
preprocess_start = time.time()
|
70 |
+
img = preprocess_image(image)
|
71 |
+
print(f"Preprocessing time: {time.time() - preprocess_start:.2f}s")
|
72 |
+
|
73 |
+
# Step 2: Prediction
|
74 |
+
predict_start = time.time()
|
75 |
+
results = model.predict(
|
76 |
+
source=img,
|
77 |
+
verbose=False,
|
78 |
+
stream=False, # Disable streaming mode
|
79 |
+
augment=False # Disable TTA for speed
|
80 |
+
)
|
81 |
+
print(f"Prediction time: {time.time() - predict_start:.2f}s")
|
82 |
+
|
83 |
+
# Step 3: Postprocessing
|
84 |
+
postprocess_start = time.time()
|
85 |
+
num_leaves = len(results[0].boxes)
|
86 |
+
rendered_img = render_result(model=model, image=img, result=results[0])
|
87 |
+
rendered_img = cv2.cvtColor(rendered_img, cv2.COLOR_BGR2RGB)
|
88 |
+
print(f"Postprocessing time: {time.time() - postprocess_start:.2f}s")
|
89 |
+
|
90 |
+
total_time = time.time() - start_time
|
91 |
+
print(f"\nTotal processing time: {total_time:.2f}s")
|
92 |
+
print(f"Detected leaves: {num_leaves}")
|
93 |
+
print("-"*50)
|
94 |
+
|
95 |
+
return rendered_img, num_leaves
|
96 |
|
97 |
+
except Exception as e:
|
98 |
+
print(f"Error processing image: {str(e)}")
|
99 |
+
return None, 0
|
100 |
+
|
101 |
+
# --------------------------
|
102 |
+
# Gradio Interface
|
103 |
+
# --------------------------
|
104 |
+
with gr.Blocks(title="Leaf Detection", theme=gr.themes.Soft()) as demo:
|
105 |
+
gr.Markdown("# π Real-Time Plant Leaf Detection")
|
106 |
+
gr.Markdown("Upload a plant image to analyze leaf count and health")
|
107 |
+
|
108 |
+
with gr.Row():
|
109 |
+
input_image = gr.Image(label="Input Image", type="numpy")
|
110 |
+
output_image = gr.Image(label="Detection Results", width=600)
|
111 |
|
112 |
+
with gr.Row():
|
113 |
+
leaf_count = gr.Number(label="Detected Leaves", precision=0)
|
114 |
+
process_btn = gr.Button("Analyze Image", variant="primary")
|
115 |
|
116 |
+
progress = gr.Textbox(label="Processing Status", visible=True)
|
|
|
|
|
117 |
|
118 |
+
process_btn.click(
|
119 |
+
fn=detect_leaves,
|
120 |
+
inputs=[input_image],
|
121 |
+
outputs=[output_image, leaf_count]
|
122 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
if __name__ == "__main__":
|
125 |
+
demo.launch(
|
126 |
server_port=7860,
|
127 |
+
show_error=True,
|
128 |
+
share=False
|
129 |
)
|