Spaces:
Sleeping
Sleeping
File size: 4,646 Bytes
4c527e5 1149444 4c527e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import streamlit as st
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import requests
import daal4py as d4p # Intel DAAL
import numpy as np
import dpctl
from sklearnex import patch_sklearn, config_context
patch_sklearn()
# Alpha Vantage API Setup (replace with your API key)
ALPHA_VANTAGE_API_KEY = "your_alpha_vantage_api_key"
# Initialize Hugging Face's sentiment analysis pipeline
@st.cache_resource
def load_sentiment_model():
return pipeline("sentiment-analysis", model="huggingface/llama-3b-instruct")
# Load LLaMA model for custom recommendations or Q&A
@st.cache_resource
def load_llama_model():
model_name = "meta-llama/Llama-2-7b-chat-hf" # Adjust this to your preferred model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
return tokenizer, model
# Fetch stock data using Alpha Vantage
def fetch_stock_data(symbol):
url = f"https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol={symbol}&apikey={ALPHA_VANTAGE_API_KEY}"
response = requests.get(url)
return response.json().get("Time Series (Daily)", {})
# Compute Moving Average using Intel oneDAL
def compute_moving_average(prices, window=5):
# Convert prices to a NumPy array and reshape it for DAAL
import numpy as np
price_array = np.array(prices, dtype=np.float64).reshape(-1, 1)
# Initialize Intel DAAL low-order moments algorithm (for moving average)
algorithm = d4p.low_order_moments()
# Apply rolling window and calculate moving averages
moving_averages = []
for i in range(len(price_array) - window + 1):
window_data = price_array[i:i + window]
result = algorithm.compute(window_data)
moving_averages.append(result.mean[0])
return moving_averages
# Perform technical analysis using Alpha Vantage and oneDAL
def technical_analysis(symbol):
data = fetch_stock_data(symbol)
if data:
# Extract closing prices from the time series data
closing_prices = [float(v['4. close']) for v in data.values()]
dates = list(data.keys())
# Compute 5-day moving average using oneDAL
moving_averages = compute_moving_average(closing_prices)
# Display latest date's price and moving average
latest_date = dates[0]
latest_price = closing_prices[0]
latest_moving_average = moving_averages[0] if moving_averages else "N/A"
return {
"Date": latest_date,
"Closing Price": latest_price,
"5-Day Moving Average": latest_moving_average
}
return {}
# Streamlit Web App
def main():
st.title("Stock Analysis App with Intel oneDAL")
st.write("""
This app provides a comprehensive stock analysis including:
- Sentiment Analysis of recent news
- Fundamental Analysis (Market Cap, PE Ratio, EPS)
- Technical Analysis (Prices, Moving Average using Intel oneDAL)
- Buy/Sell/Hold Recommendations
""")
# Input: Stock symbol of a public listed company
company_symbol = st.text_input("Enter the stock symbol (e.g., AAPL, TSLA, GOOGL):")
if company_symbol:
try:
# Fetch stock data from Alpha Vantage API
stock_data = fetch_stock_data(company_symbol)
if stock_data:
# Display the fetched stock overview
st.subheader("Asset Overview")
st.json(stock_data)
# Split the sections into different boxes using Streamlit's `expander`
with st.expander("Technical Analysis (Intel oneDAL)"):
st.subheader("Technical Analysis")
tech_analysis = technical_analysis(company_symbol)
st.write(tech_analysis)
with st.expander("Sentiment Analysis"):
st.subheader("Sentiment Analysis")
sentiment_model = load_sentiment_model()
sentiment = sentiment_analysis(company_symbol, sentiment_model)
st.write(sentiment)
with st.expander("Recommendation"):
st.subheader("Recommendation")
tokenizer, llama_model = load_llama_model()
stock_recommendation = recommendation(company_symbol, tokenizer, llama_model)
st.write(stock_recommendation)
else:
st.error(f"No data available for the symbol entered.")
except Exception as e:
st.error(f"An error occurred: {e}")
if __name__ == "__main__":
main()
|