Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import requests
|
4 |
+
import daal4py as d4p # Intel DAAL
|
5 |
+
|
6 |
+
# Alpha Vantage API Setup (replace with your API key)
|
7 |
+
ALPHA_VANTAGE_API_KEY = "your_alpha_vantage_api_key"
|
8 |
+
|
9 |
+
# Initialize Hugging Face's sentiment analysis pipeline
|
10 |
+
@st.cache_resource
|
11 |
+
def load_sentiment_model():
|
12 |
+
return pipeline("sentiment-analysis", model="huggingface/llama-3b-instruct")
|
13 |
+
|
14 |
+
# Load LLaMA model for custom recommendations or Q&A
|
15 |
+
@st.cache_resource
|
16 |
+
def load_llama_model():
|
17 |
+
model_name = "meta-llama/Llama-2-7b-chat-hf" # Adjust this to your preferred model
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
20 |
+
return tokenizer, model
|
21 |
+
|
22 |
+
# Fetch stock data using Alpha Vantage
|
23 |
+
def fetch_stock_data(symbol):
|
24 |
+
url = f"https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol={symbol}&apikey={ALPHA_VANTAGE_API_KEY}"
|
25 |
+
response = requests.get(url)
|
26 |
+
return response.json().get("Time Series (Daily)", {})
|
27 |
+
|
28 |
+
# Compute Moving Average using Intel oneDAL
|
29 |
+
def compute_moving_average(prices, window=5):
|
30 |
+
# Convert prices to a NumPy array and reshape it for DAAL
|
31 |
+
import numpy as np
|
32 |
+
price_array = np.array(prices, dtype=np.float64).reshape(-1, 1)
|
33 |
+
|
34 |
+
# Initialize Intel DAAL low-order moments algorithm (for moving average)
|
35 |
+
algorithm = d4p.low_order_moments()
|
36 |
+
|
37 |
+
# Apply rolling window and calculate moving averages
|
38 |
+
moving_averages = []
|
39 |
+
for i in range(len(price_array) - window + 1):
|
40 |
+
window_data = price_array[i:i + window]
|
41 |
+
result = algorithm.compute(window_data)
|
42 |
+
moving_averages.append(result.mean[0])
|
43 |
+
|
44 |
+
return moving_averages
|
45 |
+
|
46 |
+
# Perform technical analysis using Alpha Vantage and oneDAL
|
47 |
+
def technical_analysis(symbol):
|
48 |
+
data = fetch_stock_data(symbol)
|
49 |
+
|
50 |
+
if data:
|
51 |
+
# Extract closing prices from the time series data
|
52 |
+
closing_prices = [float(v['4. close']) for v in data.values()]
|
53 |
+
dates = list(data.keys())
|
54 |
+
|
55 |
+
# Compute 5-day moving average using oneDAL
|
56 |
+
moving_averages = compute_moving_average(closing_prices)
|
57 |
+
|
58 |
+
# Display latest date's price and moving average
|
59 |
+
latest_date = dates[0]
|
60 |
+
latest_price = closing_prices[0]
|
61 |
+
latest_moving_average = moving_averages[0] if moving_averages else "N/A"
|
62 |
+
|
63 |
+
return {
|
64 |
+
"Date": latest_date,
|
65 |
+
"Closing Price": latest_price,
|
66 |
+
"5-Day Moving Average": latest_moving_average
|
67 |
+
}
|
68 |
+
return {}
|
69 |
+
|
70 |
+
# Streamlit Web App
|
71 |
+
def main():
|
72 |
+
st.title("Stock Analysis App with Intel oneDAL")
|
73 |
+
st.write("""
|
74 |
+
This app provides a comprehensive stock analysis including:
|
75 |
+
- Sentiment Analysis of recent news
|
76 |
+
- Fundamental Analysis (Market Cap, PE Ratio, EPS)
|
77 |
+
- Technical Analysis (Prices, Moving Average using Intel oneDAL)
|
78 |
+
- Buy/Sell/Hold Recommendations
|
79 |
+
""")
|
80 |
+
|
81 |
+
# Input: Stock symbol of a public listed company
|
82 |
+
company_symbol = st.text_input("Enter the stock symbol (e.g., AAPL, TSLA, GOOGL):")
|
83 |
+
|
84 |
+
if company_symbol:
|
85 |
+
try:
|
86 |
+
# Fetch stock data from Alpha Vantage API
|
87 |
+
stock_data = fetch_stock_data(company_symbol)
|
88 |
+
|
89 |
+
if stock_data:
|
90 |
+
# Display the fetched stock overview
|
91 |
+
st.subheader("Asset Overview")
|
92 |
+
st.json(stock_data)
|
93 |
+
|
94 |
+
# Split the sections into different boxes using Streamlit's `expander`
|
95 |
+
with st.expander("Technical Analysis (Intel oneDAL)"):
|
96 |
+
st.subheader("Technical Analysis")
|
97 |
+
tech_analysis = technical_analysis(company_symbol)
|
98 |
+
st.write(tech_analysis)
|
99 |
+
|
100 |
+
with st.expander("Sentiment Analysis"):
|
101 |
+
st.subheader("Sentiment Analysis")
|
102 |
+
sentiment_model = load_sentiment_model()
|
103 |
+
sentiment = sentiment_analysis(company_symbol, sentiment_model)
|
104 |
+
st.write(sentiment)
|
105 |
+
|
106 |
+
with st.expander("Recommendation"):
|
107 |
+
st.subheader("Recommendation")
|
108 |
+
tokenizer, llama_model = load_llama_model()
|
109 |
+
stock_recommendation = recommendation(company_symbol, tokenizer, llama_model)
|
110 |
+
st.write(stock_recommendation)
|
111 |
+
else:
|
112 |
+
st.error(f"No data available for the symbol entered.")
|
113 |
+
|
114 |
+
except Exception as e:
|
115 |
+
st.error(f"An error occurred: {e}")
|
116 |
+
|
117 |
+
if __name__ == "__main__":
|
118 |
+
main()
|