|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from types import MethodType |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union |
|
|
|
import warnings |
|
import numpy as np |
|
import torch |
|
from transformers import Seq2SeqTrainer |
|
|
|
from ...extras.constants import IGNORE_INDEX |
|
from ...extras.logging import get_logger |
|
from ..callbacks import PissaConvertCallback, SaveProcessorCallback |
|
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler |
|
|
|
|
|
if TYPE_CHECKING: |
|
import optuna |
|
from torch.utils.data import Dataset |
|
from transformers import ProcessorMixin |
|
from transformers.trainer import PredictionOutput |
|
|
|
from ...hparams import FinetuningArguments |
|
|
|
from transformers.trainer_utils import ( |
|
enable_full_determinism, |
|
find_executable_batch_size, |
|
get_last_checkpoint, |
|
set_seed, |
|
) |
|
|
|
import huggingface_hub.utils as hf_hub_utils |
|
from transformers.utils import is_sagemaker_mp_enabled |
|
from transformers.trainer_callback import TrainerState |
|
|
|
TRAINER_STATE_NAME = "trainer_state.json" |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
class CustomSeq2SeqTrainer(Seq2SeqTrainer): |
|
r""" |
|
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE. |
|
""" |
|
|
|
def __init__( |
|
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs |
|
) -> None: |
|
super().__init__(**kwargs) |
|
self.finetuning_args = finetuning_args |
|
|
|
if processor is not None: |
|
self.add_callback(SaveProcessorCallback(processor)) |
|
|
|
if finetuning_args.pissa_convert: |
|
self.add_callback(PissaConvertCallback) |
|
|
|
|
|
def create_optimizer(self) -> "torch.optim.Optimizer": |
|
if self.optimizer is None: |
|
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args) |
|
return super().create_optimizer() |
|
|
|
def create_scheduler( |
|
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None |
|
) -> "torch.optim.lr_scheduler.LRScheduler": |
|
create_custom_scheduler(self.args, num_training_steps, optimizer) |
|
return super().create_scheduler(num_training_steps, optimizer) |
|
|
|
def prediction_step( |
|
self, |
|
model: "torch.nn.Module", |
|
inputs: Dict[str, Union[torch.Tensor, Any]], |
|
prediction_loss_only: bool, |
|
ignore_keys: Optional[List[str]] = None, |
|
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: |
|
r""" |
|
Removes the prompt part in the generated tokens. |
|
|
|
Subclass and override to inject custom behavior. |
|
""" |
|
labels = inputs["labels"].detach().clone() if "labels" in inputs else None |
|
if self.args.predict_with_generate: |
|
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor." |
|
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1) |
|
if prompt_len > label_len: |
|
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"]) |
|
if label_len > prompt_len: |
|
inputs["labels"] = inputs["labels"][:, :prompt_len] |
|
|
|
loss, generated_tokens, _ = super().prediction_step( |
|
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys |
|
) |
|
if generated_tokens is not None and self.args.predict_with_generate: |
|
generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id |
|
generated_tokens = generated_tokens.contiguous() |
|
|
|
return loss, generated_tokens, labels |
|
|
|
def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor: |
|
r""" |
|
Pads the tensor to the same length as the target tensor. |
|
""" |
|
assert self.tokenizer.pad_token_id is not None, "Pad token is required." |
|
padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor) |
|
padded_tensor[:, -src_tensor.shape[-1] :] = src_tensor |
|
return padded_tensor.contiguous() |
|
|
|
def save_predictions(self, dataset: "Dataset", predict_results: "PredictionOutput") -> None: |
|
r""" |
|
Saves model predictions to `output_dir`. |
|
|
|
A custom behavior that not contained in Seq2SeqTrainer. |
|
""" |
|
if not self.is_world_process_zero(): |
|
return |
|
|
|
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl") |
|
logger.info(f"Saving prediction results to {output_prediction_file}") |
|
|
|
labels = np.where( |
|
predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id |
|
) |
|
preds = np.where( |
|
predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id |
|
) |
|
|
|
for i in range(len(preds)): |
|
pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0] |
|
if len(pad_len): |
|
preds[i] = np.concatenate((preds[i][pad_len[0] :], preds[i][: pad_len[0]]), axis=-1) |
|
|
|
decoded_inputs = self.tokenizer.batch_decode(dataset["input_ids"], skip_special_tokens=True) |
|
decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True) |
|
|
|
with open(output_prediction_file, "w", encoding="utf-8") as writer: |
|
res: List[str] = [] |
|
for text, label, pred in zip(decoded_inputs, decoded_labels, decoded_preds): |
|
res.append(json.dumps({"prompt": text, "label": label, "predict": pred}, ensure_ascii=False)) |
|
|
|
writer.write("\n".join(res)) |
|
|
|
def train( |
|
self, |
|
resume_from_checkpoint: Optional[Union[str, bool]] = None, |
|
trial: Union["optuna.Trial", Dict[str, Any]] = None, |
|
ignore_keys_for_eval: Optional[List[str]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Main training entry point. |
|
|
|
Args: |
|
resume_from_checkpoint (`str` or `bool`, *optional*): |
|
If a `str`, local path to a saved checkpoint as saved by a previous instance of [`Trainer`]. If a |
|
`bool` and equals `True`, load the last checkpoint in *args.output_dir* as saved by a previous instance |
|
of [`Trainer`]. If present, training will resume from the model/optimizer/scheduler states loaded here. |
|
trial (`optuna.Trial` or `Dict[str, Any]`, *optional*): |
|
The trial run or the hyperparameter dictionary for hyperparameter search. |
|
ignore_keys_for_eval (`List[str]`, *optional*) |
|
A list of keys in the output of your model (if it is a dictionary) that should be ignored when |
|
gathering predictions for evaluation during the training. |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
Additional keyword arguments used to hide deprecated arguments |
|
""" |
|
if resume_from_checkpoint is False: |
|
resume_from_checkpoint = None |
|
|
|
|
|
self._memory_tracker.start() |
|
|
|
args = self.args |
|
|
|
self.is_in_train = True |
|
|
|
|
|
if self.neftune_noise_alpha is not None: |
|
self.model = self._activate_neftune(self.model) |
|
|
|
|
|
|
|
if (args.fp16_full_eval or args.bf16_full_eval) and not args.do_train: |
|
self._move_model_to_device(self.model, args.device) |
|
|
|
if "model_path" in kwargs: |
|
resume_from_checkpoint = kwargs.pop("model_path") |
|
warnings.warn( |
|
"`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` " |
|
"instead.", |
|
FutureWarning, |
|
) |
|
if len(kwargs) > 0: |
|
raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.") |
|
|
|
self._hp_search_setup(trial) |
|
self._train_batch_size = self.args.train_batch_size |
|
|
|
|
|
model_reloaded = False |
|
if self.model_init is not None: |
|
|
|
enable_full_determinism(self.args.seed) if self.args.full_determinism else set_seed(self.args.seed) |
|
self.model = self.call_model_init(trial) |
|
model_reloaded = True |
|
|
|
self.optimizer, self.lr_scheduler = None, None |
|
|
|
|
|
if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint: |
|
resume_from_checkpoint = get_last_checkpoint(args.output_dir) |
|
if resume_from_checkpoint is None: |
|
raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})") |
|
|
|
if resume_from_checkpoint is not None: |
|
if not is_sagemaker_mp_enabled() and not self.is_deepspeed_enabled and not self.is_fsdp_enabled: |
|
self._load_from_checkpoint(resume_from_checkpoint, self.model.language_model) |
|
|
|
state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)) |
|
if state.train_batch_size is not None: |
|
self._train_batch_size = state.train_batch_size |
|
|
|
|
|
if model_reloaded: |
|
if self.place_model_on_device: |
|
self._move_model_to_device(self.model, args.device) |
|
self.model_wrapped = self.model |
|
|
|
inner_training_loop = find_executable_batch_size( |
|
self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size |
|
) |
|
|
|
return inner_training_loop( |
|
args=args, |
|
resume_from_checkpoint=resume_from_checkpoint, |
|
trial=trial, |
|
ignore_keys_for_eval=ignore_keys_for_eval, |
|
) |