File size: 11,340 Bytes
13362e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
# Copyright 2024 HuggingFace Inc., the LlamaFactory team, and the Llamole team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer_seq2seq.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from types import MethodType
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import warnings
import numpy as np
import torch
from transformers import Seq2SeqTrainer
from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
if TYPE_CHECKING:
import optuna
from torch.utils.data import Dataset
from transformers import ProcessorMixin
from transformers.trainer import PredictionOutput
from ...hparams import FinetuningArguments
from transformers.trainer_utils import (
enable_full_determinism,
find_executable_batch_size,
get_last_checkpoint,
set_seed,
)
import huggingface_hub.utils as hf_hub_utils
from transformers.utils import is_sagemaker_mp_enabled
from transformers.trainer_callback import TrainerState
TRAINER_STATE_NAME = "trainer_state.json"
logger = get_logger(__name__)
class CustomSeq2SeqTrainer(Seq2SeqTrainer):
r"""
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
"""
def __init__(
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
) -> None:
super().__init__(**kwargs)
self.finetuning_args = finetuning_args
if processor is not None:
self.add_callback(SaveProcessorCallback(processor))
if finetuning_args.pissa_convert:
self.add_callback(PissaConvertCallback)
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
return super().create_optimizer()
def create_scheduler(
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
) -> "torch.optim.lr_scheduler.LRScheduler":
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)
def prediction_step(
self,
model: "torch.nn.Module",
inputs: Dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[List[str]] = None,
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
r"""
Removes the prompt part in the generated tokens.
Subclass and override to inject custom behavior.
"""
labels = inputs["labels"].detach().clone() if "labels" in inputs else None # backup labels
if self.args.predict_with_generate:
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
if prompt_len > label_len:
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
if label_len > prompt_len: # truncate the labels instead of padding the inputs (llama2 fp16 compatibility)
inputs["labels"] = inputs["labels"][:, :prompt_len]
loss, generated_tokens, _ = super().prediction_step( # ignore the returned labels (may be truncated)
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
)
if generated_tokens is not None and self.args.predict_with_generate:
generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id
generated_tokens = generated_tokens.contiguous()
return loss, generated_tokens, labels
def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor:
r"""
Pads the tensor to the same length as the target tensor.
"""
assert self.tokenizer.pad_token_id is not None, "Pad token is required."
padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor)
padded_tensor[:, -src_tensor.shape[-1] :] = src_tensor # adopt left-padding
return padded_tensor.contiguous() # in contiguous memory
def save_predictions(self, dataset: "Dataset", predict_results: "PredictionOutput") -> None:
r"""
Saves model predictions to `output_dir`.
A custom behavior that not contained in Seq2SeqTrainer.
"""
if not self.is_world_process_zero():
return
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
logger.info(f"Saving prediction results to {output_prediction_file}")
labels = np.where(
predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id
)
preds = np.where(
predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id
)
for i in range(len(preds)):
pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0]
if len(pad_len): # move pad token to last
preds[i] = np.concatenate((preds[i][pad_len[0] :], preds[i][: pad_len[0]]), axis=-1)
decoded_inputs = self.tokenizer.batch_decode(dataset["input_ids"], skip_special_tokens=True)
decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True)
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True)
with open(output_prediction_file, "w", encoding="utf-8") as writer:
res: List[str] = []
for text, label, pred in zip(decoded_inputs, decoded_labels, decoded_preds):
res.append(json.dumps({"prompt": text, "label": label, "predict": pred}, ensure_ascii=False))
writer.write("\n".join(res))
def train(
self,
resume_from_checkpoint: Optional[Union[str, bool]] = None,
trial: Union["optuna.Trial", Dict[str, Any]] = None,
ignore_keys_for_eval: Optional[List[str]] = None,
**kwargs,
):
"""
Main training entry point.
Args:
resume_from_checkpoint (`str` or `bool`, *optional*):
If a `str`, local path to a saved checkpoint as saved by a previous instance of [`Trainer`]. If a
`bool` and equals `True`, load the last checkpoint in *args.output_dir* as saved by a previous instance
of [`Trainer`]. If present, training will resume from the model/optimizer/scheduler states loaded here.
trial (`optuna.Trial` or `Dict[str, Any]`, *optional*):
The trial run or the hyperparameter dictionary for hyperparameter search.
ignore_keys_for_eval (`List[str]`, *optional*)
A list of keys in the output of your model (if it is a dictionary) that should be ignored when
gathering predictions for evaluation during the training.
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments used to hide deprecated arguments
"""
if resume_from_checkpoint is False:
resume_from_checkpoint = None
# memory metrics - must set up as early as possible
self._memory_tracker.start()
args = self.args
self.is_in_train = True
# Attach NEFTune hooks if necessary
if self.neftune_noise_alpha is not None:
self.model = self._activate_neftune(self.model)
# do_train is not a reliable argument, as it might not be set and .train() still called, so
# the following is a workaround:
if (args.fp16_full_eval or args.bf16_full_eval) and not args.do_train:
self._move_model_to_device(self.model, args.device)
if "model_path" in kwargs:
resume_from_checkpoint = kwargs.pop("model_path")
warnings.warn(
"`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` "
"instead.",
FutureWarning,
)
if len(kwargs) > 0:
raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.")
# This might change the seed so needs to run first.
self._hp_search_setup(trial)
self._train_batch_size = self.args.train_batch_size
# Model re-init
model_reloaded = False
if self.model_init is not None:
# Seed must be set before instantiating the model when using model_init.
enable_full_determinism(self.args.seed) if self.args.full_determinism else set_seed(self.args.seed)
self.model = self.call_model_init(trial)
model_reloaded = True
# Reinitializes optimizer and scheduler
self.optimizer, self.lr_scheduler = None, None
# Load potential model checkpoint
if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint:
resume_from_checkpoint = get_last_checkpoint(args.output_dir)
if resume_from_checkpoint is None:
raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})")
if resume_from_checkpoint is not None:
if not is_sagemaker_mp_enabled() and not self.is_deepspeed_enabled and not self.is_fsdp_enabled:
self._load_from_checkpoint(resume_from_checkpoint, self.model.language_model)
# In case of repeating the find_executable_batch_size, set `self._train_batch_size` properly
state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME))
if state.train_batch_size is not None:
self._train_batch_size = state.train_batch_size
# If model was re-initialized, put it on the right device and update self.model_wrapped
if model_reloaded:
if self.place_model_on_device:
self._move_model_to_device(self.model, args.device)
self.model_wrapped = self.model
inner_training_loop = find_executable_batch_size(
self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size
)
return inner_training_loop(
args=args,
resume_from_checkpoint=resume_from_checkpoint,
trial=trial,
ignore_keys_for_eval=ignore_keys_for_eval,
) |