File size: 11,340 Bytes
13362e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Copyright 2024 HuggingFace Inc., the LlamaFactory team, and the Llamole team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer_seq2seq.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
from types import MethodType
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union

import warnings
import numpy as np
import torch
from transformers import Seq2SeqTrainer

from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler


if TYPE_CHECKING:
    import optuna
    from torch.utils.data import Dataset
    from transformers import ProcessorMixin
    from transformers.trainer import PredictionOutput

    from ...hparams import FinetuningArguments

from transformers.trainer_utils import (
    enable_full_determinism,
    find_executable_batch_size,
    get_last_checkpoint,
    set_seed,
)

import huggingface_hub.utils as hf_hub_utils
from transformers.utils import is_sagemaker_mp_enabled
from transformers.trainer_callback import TrainerState

TRAINER_STATE_NAME = "trainer_state.json"

logger = get_logger(__name__)


class CustomSeq2SeqTrainer(Seq2SeqTrainer):
    r"""
    Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
    """

    def __init__(
        self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
    ) -> None:
        super().__init__(**kwargs)
        self.finetuning_args = finetuning_args

        if processor is not None:
            self.add_callback(SaveProcessorCallback(processor))

        if finetuning_args.pissa_convert:
            self.add_callback(PissaConvertCallback)


    def create_optimizer(self) -> "torch.optim.Optimizer":
        if self.optimizer is None:
            self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
        return super().create_optimizer()

    def create_scheduler(
        self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
    ) -> "torch.optim.lr_scheduler.LRScheduler":
        create_custom_scheduler(self.args, num_training_steps, optimizer)
        return super().create_scheduler(num_training_steps, optimizer)

    def prediction_step(
        self,
        model: "torch.nn.Module",
        inputs: Dict[str, Union[torch.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[List[str]] = None,
    ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
        r"""
        Removes the prompt part in the generated tokens.

        Subclass and override to inject custom behavior.
        """
        labels = inputs["labels"].detach().clone() if "labels" in inputs else None  # backup labels
        if self.args.predict_with_generate:
            assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
            prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
            if prompt_len > label_len:
                inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
            if label_len > prompt_len:  # truncate the labels instead of padding the inputs (llama2 fp16 compatibility)
                inputs["labels"] = inputs["labels"][:, :prompt_len]
        
        loss, generated_tokens, _ = super().prediction_step(  # ignore the returned labels (may be truncated)
            model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
        )
        if generated_tokens is not None and self.args.predict_with_generate:
            generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id
            generated_tokens = generated_tokens.contiguous()

        return loss, generated_tokens, labels

    def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor:
        r"""
        Pads the tensor to the same length as the target tensor.
        """
        assert self.tokenizer.pad_token_id is not None, "Pad token is required."
        padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor)
        padded_tensor[:, -src_tensor.shape[-1] :] = src_tensor  # adopt left-padding
        return padded_tensor.contiguous()  # in contiguous memory

    def save_predictions(self, dataset: "Dataset", predict_results: "PredictionOutput") -> None:
        r"""
        Saves model predictions to `output_dir`.

        A custom behavior that not contained in Seq2SeqTrainer.
        """
        if not self.is_world_process_zero():
            return

        output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
        logger.info(f"Saving prediction results to {output_prediction_file}")

        labels = np.where(
            predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id
        )
        preds = np.where(
            predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id
        )

        for i in range(len(preds)):
            pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0]
            if len(pad_len):  # move pad token to last
                preds[i] = np.concatenate((preds[i][pad_len[0] :], preds[i][: pad_len[0]]), axis=-1)

        decoded_inputs = self.tokenizer.batch_decode(dataset["input_ids"], skip_special_tokens=True)
        decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True)
        decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True)

        with open(output_prediction_file, "w", encoding="utf-8") as writer:
            res: List[str] = []
            for text, label, pred in zip(decoded_inputs, decoded_labels, decoded_preds):
                res.append(json.dumps({"prompt": text, "label": label, "predict": pred}, ensure_ascii=False))

            writer.write("\n".join(res))

    def train(
        self,
        resume_from_checkpoint: Optional[Union[str, bool]] = None,
        trial: Union["optuna.Trial", Dict[str, Any]] = None,
        ignore_keys_for_eval: Optional[List[str]] = None,
        **kwargs,
    ):
        """
        Main training entry point.

        Args:
            resume_from_checkpoint (`str` or `bool`, *optional*):
                If a `str`, local path to a saved checkpoint as saved by a previous instance of [`Trainer`]. If a
                `bool` and equals `True`, load the last checkpoint in *args.output_dir* as saved by a previous instance
                of [`Trainer`]. If present, training will resume from the model/optimizer/scheduler states loaded here.
            trial (`optuna.Trial` or `Dict[str, Any]`, *optional*):
                The trial run or the hyperparameter dictionary for hyperparameter search.
            ignore_keys_for_eval (`List[str]`, *optional*)
                A list of keys in the output of your model (if it is a dictionary) that should be ignored when
                gathering predictions for evaluation during the training.
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments used to hide deprecated arguments
        """
        if resume_from_checkpoint is False:
            resume_from_checkpoint = None

        # memory metrics - must set up as early as possible
        self._memory_tracker.start()

        args = self.args

        self.is_in_train = True

        # Attach NEFTune hooks if necessary
        if self.neftune_noise_alpha is not None:
            self.model = self._activate_neftune(self.model)

        # do_train is not a reliable argument, as it might not be set and .train() still called, so
        # the following is a workaround:
        if (args.fp16_full_eval or args.bf16_full_eval) and not args.do_train:
            self._move_model_to_device(self.model, args.device)

        if "model_path" in kwargs:
            resume_from_checkpoint = kwargs.pop("model_path")
            warnings.warn(
                "`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` "
                "instead.",
                FutureWarning,
            )
        if len(kwargs) > 0:
            raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.")
        # This might change the seed so needs to run first.
        self._hp_search_setup(trial)
        self._train_batch_size = self.args.train_batch_size

        # Model re-init
        model_reloaded = False
        if self.model_init is not None:
            # Seed must be set before instantiating the model when using model_init.
            enable_full_determinism(self.args.seed) if self.args.full_determinism else set_seed(self.args.seed)
            self.model = self.call_model_init(trial)
            model_reloaded = True
            # Reinitializes optimizer and scheduler
            self.optimizer, self.lr_scheduler = None, None

        # Load potential model checkpoint
        if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint:
            resume_from_checkpoint = get_last_checkpoint(args.output_dir)
            if resume_from_checkpoint is None:
                raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})")

        if resume_from_checkpoint is not None:
            if not is_sagemaker_mp_enabled() and not self.is_deepspeed_enabled and not self.is_fsdp_enabled:
                self._load_from_checkpoint(resume_from_checkpoint, self.model.language_model)
            # In case of repeating the find_executable_batch_size, set `self._train_batch_size` properly
            state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME))
            if state.train_batch_size is not None:
                self._train_batch_size = state.train_batch_size

        # If model was re-initialized, put it on the right device and update self.model_wrapped
        if model_reloaded:
            if self.place_model_on_device:
                self._move_model_to_device(self.model, args.device)
            self.model_wrapped = self.model

        inner_training_loop = find_executable_batch_size(
            self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size
        )

        return inner_training_loop(
            args=args,
            resume_from_checkpoint=resume_from_checkpoint,
            trial=trial,
            ignore_keys_for_eval=ignore_keys_for_eval,
        )