Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import time | |
import torch | |
import logging | |
from typing import Dict, Tuple | |
from contextlib import contextmanager | |
from distutils.version import LooseVersion | |
from funasr_detach.register import tables | |
from funasr_detach.models.ctc.ctc import CTC | |
from funasr_detach.utils import postprocess_utils | |
from funasr_detach.metrics.compute_acc import th_accuracy | |
from funasr_detach.utils.datadir_writer import DatadirWriter | |
from funasr_detach.models.paraformer.model import Paraformer | |
from funasr_detach.models.paraformer.search import Hypothesis | |
from funasr_detach.models.paraformer.cif_predictor import mae_loss | |
from funasr_detach.train_utils.device_funcs import force_gatherable | |
from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss | |
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list | |
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank | |
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): | |
from torch.cuda.amp import autocast | |
else: | |
# Nothing to do if torch<1.6.0 | |
def autocast(enabled=True): | |
yield | |
class ParaformerStreaming(Paraformer): | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition | |
https://arxiv.org/abs/2206.08317 | |
""" | |
def __init__( | |
self, | |
*args, | |
**kwargs, | |
): | |
super().__init__(*args, **kwargs) | |
# import pdb; | |
# pdb.set_trace() | |
self.sampling_ratio = kwargs.get("sampling_ratio", 0.2) | |
self.scama_mask = None | |
if ( | |
hasattr(self.encoder, "overlap_chunk_cls") | |
and self.encoder.overlap_chunk_cls is not None | |
): | |
from funasr_detach.models.scama.chunk_utilis import ( | |
build_scama_mask_for_cross_attention_decoder, | |
) | |
self.build_scama_mask_for_cross_attention_decoder_fn = ( | |
build_scama_mask_for_cross_attention_decoder | |
) | |
self.decoder_attention_chunk_type = kwargs.get( | |
"decoder_attention_chunk_type", "chunk" | |
) | |
def forward( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
text: torch.Tensor, | |
text_lengths: torch.Tensor, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: | |
"""Encoder + Decoder + Calc loss | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
text: (Batch, Length) | |
text_lengths: (Batch,) | |
""" | |
# import pdb; | |
# pdb.set_trace() | |
decoding_ind = kwargs.get("decoding_ind") | |
if len(text_lengths.size()) > 1: | |
text_lengths = text_lengths[:, 0] | |
if len(speech_lengths.size()) > 1: | |
speech_lengths = speech_lengths[:, 0] | |
batch_size = speech.shape[0] | |
# Encoder | |
if hasattr(self.encoder, "overlap_chunk_cls"): | |
ind = self.encoder.overlap_chunk_cls.random_choice( | |
self.training, decoding_ind | |
) | |
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths, ind=ind) | |
else: | |
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
loss_ctc, cer_ctc = None, None | |
loss_pre = None | |
stats = dict() | |
# decoder: CTC branch | |
if self.ctc_weight > 0.0: | |
if hasattr(self.encoder, "overlap_chunk_cls"): | |
encoder_out_ctc, encoder_out_lens_ctc = ( | |
self.encoder.overlap_chunk_cls.remove_chunk( | |
encoder_out, encoder_out_lens, chunk_outs=None | |
) | |
) | |
else: | |
encoder_out_ctc, encoder_out_lens_ctc = encoder_out, encoder_out_lens | |
loss_ctc, cer_ctc = self._calc_ctc_loss( | |
encoder_out_ctc, encoder_out_lens_ctc, text, text_lengths | |
) | |
# Collect CTC branch stats | |
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None | |
stats["cer_ctc"] = cer_ctc | |
# decoder: Attention decoder branch | |
loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att = ( | |
self._calc_att_predictor_loss( | |
encoder_out, encoder_out_lens, text, text_lengths | |
) | |
) | |
# 3. CTC-Att loss definition | |
if self.ctc_weight == 0.0: | |
loss = loss_att + loss_pre * self.predictor_weight | |
else: | |
loss = ( | |
self.ctc_weight * loss_ctc | |
+ (1 - self.ctc_weight) * loss_att | |
+ loss_pre * self.predictor_weight | |
) | |
# Collect Attn branch stats | |
stats["loss_att"] = loss_att.detach() if loss_att is not None else None | |
stats["pre_loss_att"] = ( | |
pre_loss_att.detach() if pre_loss_att is not None else None | |
) | |
stats["acc"] = acc_att | |
stats["cer"] = cer_att | |
stats["wer"] = wer_att | |
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None | |
stats["loss"] = torch.clone(loss.detach()) | |
# force_gatherable: to-device and to-tensor if scalar for DataParallel | |
if self.length_normalized_loss: | |
batch_size = (text_lengths + self.predictor_bias).sum() | |
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) | |
return loss, stats, weight | |
def encode_chunk( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
cache: dict = None, | |
**kwargs, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Frontend + Encoder. Note that this method is used by asr_inference.py | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
ind: int | |
""" | |
with autocast(False): | |
# Data augmentation | |
if self.specaug is not None and self.training: | |
speech, speech_lengths = self.specaug(speech, speech_lengths) | |
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN | |
if self.normalize is not None: | |
speech, speech_lengths = self.normalize(speech, speech_lengths) | |
# Forward encoder | |
encoder_out, encoder_out_lens, _ = self.encoder.forward_chunk( | |
speech, speech_lengths, cache=cache["encoder"] | |
) | |
if isinstance(encoder_out, tuple): | |
encoder_out = encoder_out[0] | |
return encoder_out, torch.tensor([encoder_out.size(1)]) | |
def _calc_att_predictor_loss( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor, | |
ys_pad_lens: torch.Tensor, | |
): | |
encoder_out_mask = ( | |
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] | |
).to(encoder_out.device) | |
if self.predictor_bias == 1: | |
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
ys_pad_lens = ys_pad_lens + self.predictor_bias | |
mask_chunk_predictor = None | |
if self.encoder.overlap_chunk_cls is not None: | |
mask_chunk_predictor = ( | |
self.encoder.overlap_chunk_cls.get_mask_chunk_predictor( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
) | |
mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
encoder_out = encoder_out * mask_shfit_chunk | |
pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor( | |
encoder_out, | |
ys_pad, | |
encoder_out_mask, | |
ignore_id=self.ignore_id, | |
mask_chunk_predictor=mask_chunk_predictor, | |
target_label_length=ys_pad_lens, | |
) | |
predictor_alignments, predictor_alignments_len = ( | |
self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens) | |
) | |
scama_mask = None | |
if ( | |
self.encoder.overlap_chunk_cls is not None | |
and self.decoder_attention_chunk_type == "chunk" | |
): | |
encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur | |
attention_chunk_center_bias = 0 | |
attention_chunk_size = encoder_chunk_size | |
decoder_att_look_back_factor = ( | |
self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur | |
) | |
mask_shift_att_chunk_decoder = ( | |
self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
) | |
scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn( | |
predictor_alignments=predictor_alignments, | |
encoder_sequence_length=encoder_out_lens, | |
chunk_size=1, | |
encoder_chunk_size=encoder_chunk_size, | |
attention_chunk_center_bias=attention_chunk_center_bias, | |
attention_chunk_size=attention_chunk_size, | |
attention_chunk_type=self.decoder_attention_chunk_type, | |
step=None, | |
predictor_mask_chunk_hopping=mask_chunk_predictor, | |
decoder_att_look_back_factor=decoder_att_look_back_factor, | |
mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, | |
target_length=ys_pad_lens, | |
is_training=self.training, | |
) | |
elif self.encoder.overlap_chunk_cls is not None: | |
encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk( | |
encoder_out, encoder_out_lens, chunk_outs=None | |
) | |
# 0. sampler | |
decoder_out_1st = None | |
pre_loss_att = None | |
if self.sampling_ratio > 0.0: | |
if self.step_cur < 2: | |
logging.info( | |
"enable sampler in paraformer, sampling_ratio: {}".format( | |
self.sampling_ratio | |
) | |
) | |
if self.use_1st_decoder_loss: | |
sematic_embeds, decoder_out_1st, pre_loss_att = self.sampler_with_grad( | |
encoder_out, | |
encoder_out_lens, | |
ys_pad, | |
ys_pad_lens, | |
pre_acoustic_embeds, | |
scama_mask, | |
) | |
else: | |
sematic_embeds, decoder_out_1st = self.sampler( | |
encoder_out, | |
encoder_out_lens, | |
ys_pad, | |
ys_pad_lens, | |
pre_acoustic_embeds, | |
scama_mask, | |
) | |
else: | |
if self.step_cur < 2: | |
logging.info( | |
"disable sampler in paraformer, sampling_ratio: {}".format( | |
self.sampling_ratio | |
) | |
) | |
sematic_embeds = pre_acoustic_embeds | |
# 1. Forward decoder | |
decoder_outs = self.decoder( | |
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, scama_mask | |
) | |
decoder_out, _ = decoder_outs[0], decoder_outs[1] | |
if decoder_out_1st is None: | |
decoder_out_1st = decoder_out | |
# 2. Compute attention loss | |
loss_att = self.criterion_att(decoder_out, ys_pad) | |
acc_att = th_accuracy( | |
decoder_out_1st.view(-1, self.vocab_size), | |
ys_pad, | |
ignore_label=self.ignore_id, | |
) | |
loss_pre = self.criterion_pre( | |
ys_pad_lens.type_as(pre_token_length), pre_token_length | |
) | |
# Compute cer/wer using attention-decoder | |
if self.training or self.error_calculator is None: | |
cer_att, wer_att = None, None | |
else: | |
ys_hat = decoder_out_1st.argmax(dim=-1) | |
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) | |
return loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att | |
def sampler( | |
self, | |
encoder_out, | |
encoder_out_lens, | |
ys_pad, | |
ys_pad_lens, | |
pre_acoustic_embeds, | |
chunk_mask=None, | |
): | |
tgt_mask = ( | |
~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None] | |
).to(ys_pad.device) | |
ys_pad_masked = ys_pad * tgt_mask[:, :, 0] | |
if self.share_embedding: | |
ys_pad_embed = self.decoder.output_layer.weight[ys_pad_masked] | |
else: | |
ys_pad_embed = self.decoder.embed(ys_pad_masked) | |
with torch.no_grad(): | |
decoder_outs = self.decoder( | |
encoder_out, | |
encoder_out_lens, | |
pre_acoustic_embeds, | |
ys_pad_lens, | |
chunk_mask, | |
) | |
decoder_out, _ = decoder_outs[0], decoder_outs[1] | |
pred_tokens = decoder_out.argmax(-1) | |
nonpad_positions = ys_pad.ne(self.ignore_id) | |
seq_lens = (nonpad_positions).sum(1) | |
same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1) | |
input_mask = torch.ones_like(nonpad_positions) | |
bsz, seq_len = ys_pad.size() | |
for li in range(bsz): | |
target_num = ( | |
((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio | |
).long() | |
if target_num > 0: | |
input_mask[li].scatter_( | |
dim=0, | |
index=torch.randperm(seq_lens[li])[:target_num].cuda(), | |
value=0, | |
) | |
input_mask = input_mask.eq(1) | |
input_mask = input_mask.masked_fill(~nonpad_positions, False) | |
input_mask_expand_dim = input_mask.unsqueeze(2).to( | |
pre_acoustic_embeds.device | |
) | |
sematic_embeds = pre_acoustic_embeds.masked_fill( | |
~input_mask_expand_dim, 0 | |
) + ys_pad_embed.masked_fill(input_mask_expand_dim, 0) | |
return sematic_embeds * tgt_mask, decoder_out * tgt_mask | |
def calc_predictor(self, encoder_out, encoder_out_lens): | |
encoder_out_mask = ( | |
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] | |
).to(encoder_out.device) | |
mask_chunk_predictor = None | |
if self.encoder.overlap_chunk_cls is not None: | |
mask_chunk_predictor = ( | |
self.encoder.overlap_chunk_cls.get_mask_chunk_predictor( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
) | |
mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
encoder_out = encoder_out * mask_shfit_chunk | |
pre_acoustic_embeds, pre_token_length, pre_alphas, pre_peak_index = ( | |
self.predictor( | |
encoder_out, | |
None, | |
encoder_out_mask, | |
ignore_id=self.ignore_id, | |
mask_chunk_predictor=mask_chunk_predictor, | |
target_label_length=None, | |
) | |
) | |
predictor_alignments, predictor_alignments_len = ( | |
self.predictor.gen_frame_alignments( | |
pre_alphas, | |
( | |
encoder_out_lens + 1 | |
if self.predictor.tail_threshold > 0.0 | |
else encoder_out_lens | |
), | |
) | |
) | |
scama_mask = None | |
if ( | |
self.encoder.overlap_chunk_cls is not None | |
and self.decoder_attention_chunk_type == "chunk" | |
): | |
encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur | |
attention_chunk_center_bias = 0 | |
attention_chunk_size = encoder_chunk_size | |
decoder_att_look_back_factor = ( | |
self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur | |
) | |
mask_shift_att_chunk_decoder = ( | |
self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
) | |
scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn( | |
predictor_alignments=predictor_alignments, | |
encoder_sequence_length=encoder_out_lens, | |
chunk_size=1, | |
encoder_chunk_size=encoder_chunk_size, | |
attention_chunk_center_bias=attention_chunk_center_bias, | |
attention_chunk_size=attention_chunk_size, | |
attention_chunk_type=self.decoder_attention_chunk_type, | |
step=None, | |
predictor_mask_chunk_hopping=mask_chunk_predictor, | |
decoder_att_look_back_factor=decoder_att_look_back_factor, | |
mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, | |
target_length=None, | |
is_training=self.training, | |
) | |
self.scama_mask = scama_mask | |
return pre_acoustic_embeds, pre_token_length, pre_alphas, pre_peak_index | |
def calc_predictor_chunk(self, encoder_out, encoder_out_lens, cache=None, **kwargs): | |
is_final = kwargs.get("is_final", False) | |
return self.predictor.forward_chunk( | |
encoder_out, cache["encoder"], is_final=is_final | |
) | |
def cal_decoder_with_predictor( | |
self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens | |
): | |
decoder_outs = self.decoder( | |
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, self.scama_mask | |
) | |
decoder_out = decoder_outs[0] | |
decoder_out = torch.log_softmax(decoder_out, dim=-1) | |
return decoder_out, ys_pad_lens | |
def cal_decoder_with_predictor_chunk( | |
self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, cache=None | |
): | |
decoder_outs = self.decoder.forward_chunk( | |
encoder_out, sematic_embeds, cache["decoder"] | |
) | |
decoder_out = decoder_outs | |
decoder_out = torch.log_softmax(decoder_out, dim=-1) | |
return decoder_out, ys_pad_lens | |
def init_cache(self, cache: dict = {}, **kwargs): | |
chunk_size = kwargs.get("chunk_size", [0, 10, 5]) | |
encoder_chunk_look_back = kwargs.get("encoder_chunk_look_back", 0) | |
decoder_chunk_look_back = kwargs.get("decoder_chunk_look_back", 0) | |
batch_size = 1 | |
enc_output_size = kwargs["encoder_conf"]["output_size"] | |
feats_dims = ( | |
kwargs["frontend_conf"]["n_mels"] * kwargs["frontend_conf"]["lfr_m"] | |
) | |
cache_encoder = { | |
"start_idx": 0, | |
"cif_hidden": torch.zeros((batch_size, 1, enc_output_size)), | |
"cif_alphas": torch.zeros((batch_size, 1)), | |
"chunk_size": chunk_size, | |
"encoder_chunk_look_back": encoder_chunk_look_back, | |
"last_chunk": False, | |
"opt": None, | |
"feats": torch.zeros( | |
(batch_size, chunk_size[0] + chunk_size[2], feats_dims) | |
), | |
"tail_chunk": False, | |
} | |
cache["encoder"] = cache_encoder | |
cache_decoder = { | |
"decode_fsmn": None, | |
"decoder_chunk_look_back": decoder_chunk_look_back, | |
"opt": None, | |
"chunk_size": chunk_size, | |
} | |
cache["decoder"] = cache_decoder | |
cache["frontend"] = {} | |
cache["prev_samples"] = torch.empty(0) | |
return cache | |
def generate_chunk( | |
self, | |
speech, | |
speech_lengths=None, | |
key: list = None, | |
tokenizer=None, | |
frontend=None, | |
**kwargs, | |
): | |
cache = kwargs.get("cache", {}) | |
speech = speech.to(device=kwargs["device"]) | |
speech_lengths = speech_lengths.to(device=kwargs["device"]) | |
# Encoder | |
# | |
encoder_out, encoder_out_lens = self.encode_chunk( | |
speech, speech_lengths, cache=cache, is_final=kwargs.get("is_final", False) | |
) | |
print(speech.shape, encoder_out.shape, encoder_out_lens) | |
if isinstance(encoder_out, tuple): | |
encoder_out = encoder_out[0] | |
# predictor | |
predictor_outs = self.calc_predictor_chunk( | |
encoder_out, | |
encoder_out_lens, | |
cache=cache, | |
is_final=kwargs.get("is_final", False), | |
) | |
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = ( | |
predictor_outs[0], | |
predictor_outs[1], | |
predictor_outs[2], | |
predictor_outs[3], | |
) | |
pre_token_length = pre_token_length.round().long() | |
if torch.max(pre_token_length) < 1: | |
return [] | |
decoder_outs = self.cal_decoder_with_predictor_chunk( | |
encoder_out, | |
encoder_out_lens, | |
pre_acoustic_embeds, | |
pre_token_length, | |
cache=cache, | |
) | |
decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1] | |
results = [] | |
b, n, d = decoder_out.size() | |
if isinstance(key[0], (list, tuple)): | |
key = key[0] | |
for i in range(b): | |
x = encoder_out[i, : encoder_out_lens[i], :] | |
am_scores = decoder_out[i, : pre_token_length[i], :] | |
if self.beam_search is not None: | |
nbest_hyps = self.beam_search( | |
x=x, | |
am_scores=am_scores, | |
maxlenratio=kwargs.get("maxlenratio", 0.0), | |
minlenratio=kwargs.get("minlenratio", 0.0), | |
) | |
nbest_hyps = nbest_hyps[: self.nbest] | |
else: | |
yseq = am_scores.argmax(dim=-1) | |
score = am_scores.max(dim=-1)[0] | |
score = torch.sum(score, dim=-1) | |
# pad with mask tokens to ensure compatibility with sos/eos tokens | |
yseq = torch.tensor( | |
[self.sos] + yseq.tolist() + [self.eos], device=yseq.device | |
) | |
nbest_hyps = [Hypothesis(yseq=yseq, score=score)] | |
for nbest_idx, hyp in enumerate(nbest_hyps): | |
# remove sos/eos and get results | |
last_pos = -1 | |
if isinstance(hyp.yseq, list): | |
token_int = hyp.yseq[1:last_pos] | |
else: | |
token_int = hyp.yseq[1:last_pos].tolist() | |
# remove blank symbol id, which is assumed to be 0 | |
token_int = list( | |
filter( | |
lambda x: x != self.eos | |
and x != self.sos | |
and x != self.blank_id, | |
token_int, | |
) | |
) | |
# Change integer-ids to tokens | |
token = tokenizer.ids2tokens(token_int) | |
# text = tokenizer.tokens2text(token) | |
result_i = token | |
results.extend(result_i) | |
return results | |
def inference( | |
self, | |
data_in, | |
data_lengths=None, | |
key: list = None, | |
tokenizer=None, | |
frontend=None, | |
cache: dict = {}, | |
**kwargs, | |
): | |
# init beamsearch | |
is_use_ctc = ( | |
kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None | |
) | |
is_use_lm = ( | |
kwargs.get("lm_weight", 0.0) > 0.00001 | |
and kwargs.get("lm_file", None) is not None | |
) | |
if self.beam_search is None and (is_use_lm or is_use_ctc): | |
logging.info("enable beam_search") | |
self.init_beam_search(**kwargs) | |
self.nbest = kwargs.get("nbest", 1) | |
if len(cache) == 0: | |
self.init_cache(cache, **kwargs) | |
meta_data = {} | |
chunk_size = kwargs.get("chunk_size", [0, 10, 5]) | |
chunk_stride_samples = int(chunk_size[1] * 960) # 600ms | |
time1 = time.perf_counter() | |
cfg = {"is_final": kwargs.get("is_final", False)} | |
audio_sample_list = load_audio_text_image_video( | |
data_in, | |
fs=frontend.fs, | |
audio_fs=kwargs.get("fs", 16000), | |
data_type=kwargs.get("data_type", "sound"), | |
tokenizer=tokenizer, | |
cache=cfg, | |
) | |
# import pdb; pdb.set_trace() | |
_is_final = cfg["is_final"] # if data_in is a file or url, set is_final=True | |
time2 = time.perf_counter() | |
meta_data["load_data"] = f"{time2 - time1:0.3f}" | |
assert len(audio_sample_list) == 1, "batch_size must be set 1" | |
audio_sample = torch.cat((cache["prev_samples"], audio_sample_list[0])) | |
n = int(len(audio_sample) // chunk_stride_samples + int(_is_final)) | |
m = int(len(audio_sample) % chunk_stride_samples * (1 - int(_is_final))) | |
tokens = [] | |
for i in range(n): | |
kwargs["is_final"] = _is_final and i == n - 1 | |
audio_sample_i = audio_sample[ | |
i * chunk_stride_samples : (i + 1) * chunk_stride_samples | |
] | |
# extract fbank feats | |
speech, speech_lengths = extract_fbank( | |
[audio_sample_i], | |
data_type=kwargs.get("data_type", "sound"), | |
frontend=frontend, | |
cache=cache["frontend"], | |
is_final=kwargs["is_final"], | |
) | |
time3 = time.perf_counter() | |
meta_data["extract_feat"] = f"{time3 - time2:0.3f}" | |
meta_data["batch_data_time"] = ( | |
speech_lengths.sum().item() | |
* frontend.frame_shift | |
* frontend.lfr_n | |
/ 1000 | |
) | |
if len(speech) == 0: | |
break | |
tokens_i = self.generate_chunk( | |
speech, | |
speech_lengths, | |
key=key, | |
tokenizer=tokenizer, | |
cache=cache, | |
frontend=frontend, | |
**kwargs, | |
) | |
tokens.extend(tokens_i) | |
text_postprocessed, _ = postprocess_utils.sentence_postprocess(tokens) | |
result_i = {"key": key[0], "text": text_postprocessed} | |
result = [result_i] | |
cache["prev_samples"] = audio_sample[:-m] | |
if _is_final: | |
self.init_cache(cache, **kwargs) | |
if kwargs.get("output_dir"): | |
if not hasattr(self, "writer"): | |
self.writer = DatadirWriter(kwargs.get("output_dir")) | |
ibest_writer = self.writer[f"{1}best_recog"] | |
ibest_writer["token"][key[0]] = " ".join(tokens) | |
ibest_writer["text"][key[0]] = text_postprocessed | |
return result, meta_data | |
def infer_encoder( | |
self, | |
data_in, | |
data_lengths=None, | |
key: list = None, | |
tokenizer=None, | |
frontend=None, | |
cache: dict = {}, | |
**kwargs, | |
): | |
if len(cache) == 0: | |
self.init_cache(cache, **kwargs) | |
meta_data = {} | |
chunk_size = kwargs.get("chunk_size", [0, 10, 5]) | |
chunk_stride_samples = int(chunk_size[1] * 960) # 600ms | |
time1 = time.perf_counter() | |
cfg = {"is_final": kwargs.get("is_final", False)} | |
if isinstance(data_in[0], torch.Tensor): | |
audio_sample_list = data_in | |
else: | |
audio_sample_list = load_audio_text_image_video( | |
data_in, | |
fs=frontend.fs, | |
audio_fs=kwargs.get("fs", 16000), | |
data_type=kwargs.get("data_type", "sound"), | |
tokenizer=tokenizer, | |
cache=cfg, | |
) | |
_is_final = cfg["is_final"] # if data_in is a file or url, set is_final=True | |
time2 = time.perf_counter() | |
meta_data["load_data"] = f"{time2 - time1:0.3f}" | |
assert len(audio_sample_list) == 1, "batch_size must be set 1" | |
audio_sample = torch.cat((cache["prev_samples"], audio_sample_list[0])) | |
n = int(len(audio_sample) // chunk_stride_samples + int(_is_final)) | |
m = int(len(audio_sample) % chunk_stride_samples * (1 - int(_is_final))) | |
encoder_outs = [] | |
meta_data["batch_data_time"] = 0.0 | |
meta_data["extract_feat"] = 0.0 | |
for i in range(n): | |
kwargs["is_final"] = _is_final and i == n - 1 | |
audio_sample_i = audio_sample[ | |
i * chunk_stride_samples : (i + 1) * chunk_stride_samples | |
] | |
time2 = time.perf_counter() | |
# extract fbank feats | |
if kwargs["is_final"] and len(audio_sample_i) == 0: | |
break | |
try: | |
speech, speech_lengths = extract_fbank( | |
[audio_sample_i], | |
data_type=kwargs.get("data_type", "sound"), | |
frontend=frontend, | |
cache=cache["frontend"], | |
is_final=kwargs["is_final"], | |
) | |
except: | |
if i == n - 1 and audio_sample_i.shape[0] < 480: | |
print(f"Warning!!!, skip {audio_sample_i.shape[0]} samples") | |
break | |
else: | |
raise RuntimeError("infer failed") | |
time3 = time.perf_counter() | |
if len(speech) == 0 and kwargs["is_final"]: | |
break | |
meta_data["extract_feat"] = meta_data["extract_feat"] + time3 - time2 | |
meta_data["batch_data_time"] = ( | |
meta_data["batch_data_time"] | |
+ speech_lengths.sum().item() | |
* frontend.frame_shift | |
* frontend.lfr_n | |
/ 1000 | |
) | |
speech = speech.to(device=kwargs["device"]) | |
speech_lengths = speech_lengths.to(device=kwargs["device"]) | |
encoder_out, encoder_out_lens = self.encode_chunk( | |
speech, | |
speech_lengths, | |
cache=cache, | |
is_final=kwargs.get("is_final", False), | |
) | |
encoder_outs.append(encoder_out[:, (-speech_lengths[0]) :]) | |
if i == n - 1: | |
break | |
speech_out = [] | |
if len(encoder_outs) > 0: | |
speech_out = torch.cat(encoder_outs, dim=1) | |
result_i = {"key": key[0], "enc_out": speech_out} | |
result = [result_i] | |
if m > 0: # tail exists | |
cache["prev_samples"] = audio_sample[-m:] | |
else: | |
cache["prev_samples"] = torch.empty(0) | |
if _is_final: | |
self.init_cache(cache, **kwargs) | |
return result, meta_data, cache | |