File size: 31,324 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)

import time
import torch
import logging
from typing import Dict, Tuple
from contextlib import contextmanager
from distutils.version import LooseVersion

from funasr_detach.register import tables
from funasr_detach.models.ctc.ctc import CTC
from funasr_detach.utils import postprocess_utils
from funasr_detach.metrics.compute_acc import th_accuracy
from funasr_detach.utils.datadir_writer import DatadirWriter
from funasr_detach.models.paraformer.model import Paraformer
from funasr_detach.models.paraformer.search import Hypothesis
from funasr_detach.models.paraformer.cif_predictor import mae_loss
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank


if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
    from torch.cuda.amp import autocast
else:
    # Nothing to do if torch<1.6.0
    @contextmanager
    def autocast(enabled=True):
        yield


@tables.register("model_classes", "ParaformerStreaming")
class ParaformerStreaming(Paraformer):
    """
    Author: Speech Lab of DAMO Academy, Alibaba Group
    Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
    https://arxiv.org/abs/2206.08317
    """

    def __init__(
        self,
        *args,
        **kwargs,
    ):

        super().__init__(*args, **kwargs)

        # import pdb;
        # pdb.set_trace()
        self.sampling_ratio = kwargs.get("sampling_ratio", 0.2)

        self.scama_mask = None
        if (
            hasattr(self.encoder, "overlap_chunk_cls")
            and self.encoder.overlap_chunk_cls is not None
        ):
            from funasr_detach.models.scama.chunk_utilis import (
                build_scama_mask_for_cross_attention_decoder,
            )

            self.build_scama_mask_for_cross_attention_decoder_fn = (
                build_scama_mask_for_cross_attention_decoder
            )
            self.decoder_attention_chunk_type = kwargs.get(
                "decoder_attention_chunk_type", "chunk"
            )

    def forward(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        text: torch.Tensor,
        text_lengths: torch.Tensor,
        **kwargs,
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
        """Encoder + Decoder + Calc loss
        Args:
                speech: (Batch, Length, ...)
                speech_lengths: (Batch, )
                text: (Batch, Length)
                text_lengths: (Batch,)
        """
        # import pdb;
        # pdb.set_trace()
        decoding_ind = kwargs.get("decoding_ind")
        if len(text_lengths.size()) > 1:
            text_lengths = text_lengths[:, 0]
        if len(speech_lengths.size()) > 1:
            speech_lengths = speech_lengths[:, 0]

        batch_size = speech.shape[0]

        # Encoder
        if hasattr(self.encoder, "overlap_chunk_cls"):
            ind = self.encoder.overlap_chunk_cls.random_choice(
                self.training, decoding_ind
            )
            encoder_out, encoder_out_lens = self.encode(speech, speech_lengths, ind=ind)
        else:
            encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)

        loss_ctc, cer_ctc = None, None
        loss_pre = None
        stats = dict()

        # decoder: CTC branch

        if self.ctc_weight > 0.0:
            if hasattr(self.encoder, "overlap_chunk_cls"):
                encoder_out_ctc, encoder_out_lens_ctc = (
                    self.encoder.overlap_chunk_cls.remove_chunk(
                        encoder_out, encoder_out_lens, chunk_outs=None
                    )
                )
            else:
                encoder_out_ctc, encoder_out_lens_ctc = encoder_out, encoder_out_lens

            loss_ctc, cer_ctc = self._calc_ctc_loss(
                encoder_out_ctc, encoder_out_lens_ctc, text, text_lengths
            )
            # Collect CTC branch stats
            stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
            stats["cer_ctc"] = cer_ctc

        # decoder: Attention decoder branch
        loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att = (
            self._calc_att_predictor_loss(
                encoder_out, encoder_out_lens, text, text_lengths
            )
        )

        # 3. CTC-Att loss definition
        if self.ctc_weight == 0.0:
            loss = loss_att + loss_pre * self.predictor_weight
        else:
            loss = (
                self.ctc_weight * loss_ctc
                + (1 - self.ctc_weight) * loss_att
                + loss_pre * self.predictor_weight
            )

        # Collect Attn branch stats
        stats["loss_att"] = loss_att.detach() if loss_att is not None else None
        stats["pre_loss_att"] = (
            pre_loss_att.detach() if pre_loss_att is not None else None
        )
        stats["acc"] = acc_att
        stats["cer"] = cer_att
        stats["wer"] = wer_att
        stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None

        stats["loss"] = torch.clone(loss.detach())

        # force_gatherable: to-device and to-tensor if scalar for DataParallel
        if self.length_normalized_loss:
            batch_size = (text_lengths + self.predictor_bias).sum()
        loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
        return loss, stats, weight

    def encode_chunk(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        cache: dict = None,
        **kwargs,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Frontend + Encoder. Note that this method is used by asr_inference.py
        Args:
                speech: (Batch, Length, ...)
                speech_lengths: (Batch, )
                ind: int
        """
        with autocast(False):

            # Data augmentation
            if self.specaug is not None and self.training:
                speech, speech_lengths = self.specaug(speech, speech_lengths)

            # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
            if self.normalize is not None:
                speech, speech_lengths = self.normalize(speech, speech_lengths)

        # Forward encoder
        encoder_out, encoder_out_lens, _ = self.encoder.forward_chunk(
            speech, speech_lengths, cache=cache["encoder"]
        )
        if isinstance(encoder_out, tuple):
            encoder_out = encoder_out[0]

        return encoder_out, torch.tensor([encoder_out.size(1)])

    def _calc_att_predictor_loss(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
    ):
        encoder_out_mask = (
            ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
        ).to(encoder_out.device)
        if self.predictor_bias == 1:
            _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
            ys_pad_lens = ys_pad_lens + self.predictor_bias
        mask_chunk_predictor = None
        if self.encoder.overlap_chunk_cls is not None:
            mask_chunk_predictor = (
                self.encoder.overlap_chunk_cls.get_mask_chunk_predictor(
                    None, device=encoder_out.device, batch_size=encoder_out.size(0)
                )
            )
            mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk(
                None, device=encoder_out.device, batch_size=encoder_out.size(0)
            )
            encoder_out = encoder_out * mask_shfit_chunk
        pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor(
            encoder_out,
            ys_pad,
            encoder_out_mask,
            ignore_id=self.ignore_id,
            mask_chunk_predictor=mask_chunk_predictor,
            target_label_length=ys_pad_lens,
        )
        predictor_alignments, predictor_alignments_len = (
            self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens)
        )

        scama_mask = None
        if (
            self.encoder.overlap_chunk_cls is not None
            and self.decoder_attention_chunk_type == "chunk"
        ):
            encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur
            attention_chunk_center_bias = 0
            attention_chunk_size = encoder_chunk_size
            decoder_att_look_back_factor = (
                self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur
            )
            mask_shift_att_chunk_decoder = (
                self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder(
                    None, device=encoder_out.device, batch_size=encoder_out.size(0)
                )
            )
            scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn(
                predictor_alignments=predictor_alignments,
                encoder_sequence_length=encoder_out_lens,
                chunk_size=1,
                encoder_chunk_size=encoder_chunk_size,
                attention_chunk_center_bias=attention_chunk_center_bias,
                attention_chunk_size=attention_chunk_size,
                attention_chunk_type=self.decoder_attention_chunk_type,
                step=None,
                predictor_mask_chunk_hopping=mask_chunk_predictor,
                decoder_att_look_back_factor=decoder_att_look_back_factor,
                mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder,
                target_length=ys_pad_lens,
                is_training=self.training,
            )
        elif self.encoder.overlap_chunk_cls is not None:
            encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk(
                encoder_out, encoder_out_lens, chunk_outs=None
            )
        # 0. sampler
        decoder_out_1st = None
        pre_loss_att = None
        if self.sampling_ratio > 0.0:
            if self.step_cur < 2:
                logging.info(
                    "enable sampler in paraformer, sampling_ratio: {}".format(
                        self.sampling_ratio
                    )
                )
            if self.use_1st_decoder_loss:
                sematic_embeds, decoder_out_1st, pre_loss_att = self.sampler_with_grad(
                    encoder_out,
                    encoder_out_lens,
                    ys_pad,
                    ys_pad_lens,
                    pre_acoustic_embeds,
                    scama_mask,
                )
            else:
                sematic_embeds, decoder_out_1st = self.sampler(
                    encoder_out,
                    encoder_out_lens,
                    ys_pad,
                    ys_pad_lens,
                    pre_acoustic_embeds,
                    scama_mask,
                )
        else:
            if self.step_cur < 2:
                logging.info(
                    "disable sampler in paraformer, sampling_ratio: {}".format(
                        self.sampling_ratio
                    )
                )
            sematic_embeds = pre_acoustic_embeds

        # 1. Forward decoder
        decoder_outs = self.decoder(
            encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, scama_mask
        )
        decoder_out, _ = decoder_outs[0], decoder_outs[1]

        if decoder_out_1st is None:
            decoder_out_1st = decoder_out
        # 2. Compute attention loss
        loss_att = self.criterion_att(decoder_out, ys_pad)
        acc_att = th_accuracy(
            decoder_out_1st.view(-1, self.vocab_size),
            ys_pad,
            ignore_label=self.ignore_id,
        )
        loss_pre = self.criterion_pre(
            ys_pad_lens.type_as(pre_token_length), pre_token_length
        )

        # Compute cer/wer using attention-decoder
        if self.training or self.error_calculator is None:
            cer_att, wer_att = None, None
        else:
            ys_hat = decoder_out_1st.argmax(dim=-1)
            cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())

        return loss_att, acc_att, cer_att, wer_att, loss_pre, pre_loss_att

    def sampler(
        self,
        encoder_out,
        encoder_out_lens,
        ys_pad,
        ys_pad_lens,
        pre_acoustic_embeds,
        chunk_mask=None,
    ):

        tgt_mask = (
            ~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None]
        ).to(ys_pad.device)
        ys_pad_masked = ys_pad * tgt_mask[:, :, 0]
        if self.share_embedding:
            ys_pad_embed = self.decoder.output_layer.weight[ys_pad_masked]
        else:
            ys_pad_embed = self.decoder.embed(ys_pad_masked)
        with torch.no_grad():
            decoder_outs = self.decoder(
                encoder_out,
                encoder_out_lens,
                pre_acoustic_embeds,
                ys_pad_lens,
                chunk_mask,
            )
            decoder_out, _ = decoder_outs[0], decoder_outs[1]
            pred_tokens = decoder_out.argmax(-1)
            nonpad_positions = ys_pad.ne(self.ignore_id)
            seq_lens = (nonpad_positions).sum(1)
            same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1)
            input_mask = torch.ones_like(nonpad_positions)
            bsz, seq_len = ys_pad.size()
            for li in range(bsz):
                target_num = (
                    ((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio
                ).long()
                if target_num > 0:
                    input_mask[li].scatter_(
                        dim=0,
                        index=torch.randperm(seq_lens[li])[:target_num].cuda(),
                        value=0,
                    )
            input_mask = input_mask.eq(1)
            input_mask = input_mask.masked_fill(~nonpad_positions, False)
            input_mask_expand_dim = input_mask.unsqueeze(2).to(
                pre_acoustic_embeds.device
            )

        sematic_embeds = pre_acoustic_embeds.masked_fill(
            ~input_mask_expand_dim, 0
        ) + ys_pad_embed.masked_fill(input_mask_expand_dim, 0)
        return sematic_embeds * tgt_mask, decoder_out * tgt_mask

    def calc_predictor(self, encoder_out, encoder_out_lens):

        encoder_out_mask = (
            ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
        ).to(encoder_out.device)
        mask_chunk_predictor = None
        if self.encoder.overlap_chunk_cls is not None:
            mask_chunk_predictor = (
                self.encoder.overlap_chunk_cls.get_mask_chunk_predictor(
                    None, device=encoder_out.device, batch_size=encoder_out.size(0)
                )
            )
            mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk(
                None, device=encoder_out.device, batch_size=encoder_out.size(0)
            )
            encoder_out = encoder_out * mask_shfit_chunk
        pre_acoustic_embeds, pre_token_length, pre_alphas, pre_peak_index = (
            self.predictor(
                encoder_out,
                None,
                encoder_out_mask,
                ignore_id=self.ignore_id,
                mask_chunk_predictor=mask_chunk_predictor,
                target_label_length=None,
            )
        )
        predictor_alignments, predictor_alignments_len = (
            self.predictor.gen_frame_alignments(
                pre_alphas,
                (
                    encoder_out_lens + 1
                    if self.predictor.tail_threshold > 0.0
                    else encoder_out_lens
                ),
            )
        )

        scama_mask = None
        if (
            self.encoder.overlap_chunk_cls is not None
            and self.decoder_attention_chunk_type == "chunk"
        ):
            encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur
            attention_chunk_center_bias = 0
            attention_chunk_size = encoder_chunk_size
            decoder_att_look_back_factor = (
                self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur
            )
            mask_shift_att_chunk_decoder = (
                self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder(
                    None, device=encoder_out.device, batch_size=encoder_out.size(0)
                )
            )
            scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn(
                predictor_alignments=predictor_alignments,
                encoder_sequence_length=encoder_out_lens,
                chunk_size=1,
                encoder_chunk_size=encoder_chunk_size,
                attention_chunk_center_bias=attention_chunk_center_bias,
                attention_chunk_size=attention_chunk_size,
                attention_chunk_type=self.decoder_attention_chunk_type,
                step=None,
                predictor_mask_chunk_hopping=mask_chunk_predictor,
                decoder_att_look_back_factor=decoder_att_look_back_factor,
                mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder,
                target_length=None,
                is_training=self.training,
            )
        self.scama_mask = scama_mask

        return pre_acoustic_embeds, pre_token_length, pre_alphas, pre_peak_index

    def calc_predictor_chunk(self, encoder_out, encoder_out_lens, cache=None, **kwargs):
        is_final = kwargs.get("is_final", False)

        return self.predictor.forward_chunk(
            encoder_out, cache["encoder"], is_final=is_final
        )

    def cal_decoder_with_predictor(
        self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens
    ):
        decoder_outs = self.decoder(
            encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, self.scama_mask
        )
        decoder_out = decoder_outs[0]
        decoder_out = torch.log_softmax(decoder_out, dim=-1)
        return decoder_out, ys_pad_lens

    def cal_decoder_with_predictor_chunk(
        self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, cache=None
    ):
        decoder_outs = self.decoder.forward_chunk(
            encoder_out, sematic_embeds, cache["decoder"]
        )
        decoder_out = decoder_outs
        decoder_out = torch.log_softmax(decoder_out, dim=-1)
        return decoder_out, ys_pad_lens

    def init_cache(self, cache: dict = {}, **kwargs):
        chunk_size = kwargs.get("chunk_size", [0, 10, 5])
        encoder_chunk_look_back = kwargs.get("encoder_chunk_look_back", 0)
        decoder_chunk_look_back = kwargs.get("decoder_chunk_look_back", 0)
        batch_size = 1

        enc_output_size = kwargs["encoder_conf"]["output_size"]
        feats_dims = (
            kwargs["frontend_conf"]["n_mels"] * kwargs["frontend_conf"]["lfr_m"]
        )
        cache_encoder = {
            "start_idx": 0,
            "cif_hidden": torch.zeros((batch_size, 1, enc_output_size)),
            "cif_alphas": torch.zeros((batch_size, 1)),
            "chunk_size": chunk_size,
            "encoder_chunk_look_back": encoder_chunk_look_back,
            "last_chunk": False,
            "opt": None,
            "feats": torch.zeros(
                (batch_size, chunk_size[0] + chunk_size[2], feats_dims)
            ),
            "tail_chunk": False,
        }
        cache["encoder"] = cache_encoder

        cache_decoder = {
            "decode_fsmn": None,
            "decoder_chunk_look_back": decoder_chunk_look_back,
            "opt": None,
            "chunk_size": chunk_size,
        }
        cache["decoder"] = cache_decoder
        cache["frontend"] = {}
        cache["prev_samples"] = torch.empty(0)

        return cache

    def generate_chunk(
        self,
        speech,
        speech_lengths=None,
        key: list = None,
        tokenizer=None,
        frontend=None,
        **kwargs,
    ):
        cache = kwargs.get("cache", {})
        speech = speech.to(device=kwargs["device"])
        speech_lengths = speech_lengths.to(device=kwargs["device"])

        # Encoder
        #
        encoder_out, encoder_out_lens = self.encode_chunk(
            speech, speech_lengths, cache=cache, is_final=kwargs.get("is_final", False)
        )
        print(speech.shape, encoder_out.shape, encoder_out_lens)
        if isinstance(encoder_out, tuple):
            encoder_out = encoder_out[0]

        # predictor
        predictor_outs = self.calc_predictor_chunk(
            encoder_out,
            encoder_out_lens,
            cache=cache,
            is_final=kwargs.get("is_final", False),
        )
        pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = (
            predictor_outs[0],
            predictor_outs[1],
            predictor_outs[2],
            predictor_outs[3],
        )
        pre_token_length = pre_token_length.round().long()
        if torch.max(pre_token_length) < 1:
            return []
        decoder_outs = self.cal_decoder_with_predictor_chunk(
            encoder_out,
            encoder_out_lens,
            pre_acoustic_embeds,
            pre_token_length,
            cache=cache,
        )
        decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1]

        results = []
        b, n, d = decoder_out.size()
        if isinstance(key[0], (list, tuple)):
            key = key[0]
        for i in range(b):
            x = encoder_out[i, : encoder_out_lens[i], :]
            am_scores = decoder_out[i, : pre_token_length[i], :]
            if self.beam_search is not None:
                nbest_hyps = self.beam_search(
                    x=x,
                    am_scores=am_scores,
                    maxlenratio=kwargs.get("maxlenratio", 0.0),
                    minlenratio=kwargs.get("minlenratio", 0.0),
                )

                nbest_hyps = nbest_hyps[: self.nbest]
            else:

                yseq = am_scores.argmax(dim=-1)
                score = am_scores.max(dim=-1)[0]
                score = torch.sum(score, dim=-1)
                # pad with mask tokens to ensure compatibility with sos/eos tokens
                yseq = torch.tensor(
                    [self.sos] + yseq.tolist() + [self.eos], device=yseq.device
                )
                nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
            for nbest_idx, hyp in enumerate(nbest_hyps):

                # remove sos/eos and get results
                last_pos = -1
                if isinstance(hyp.yseq, list):
                    token_int = hyp.yseq[1:last_pos]
                else:
                    token_int = hyp.yseq[1:last_pos].tolist()

                # remove blank symbol id, which is assumed to be 0
                token_int = list(
                    filter(
                        lambda x: x != self.eos
                        and x != self.sos
                        and x != self.blank_id,
                        token_int,
                    )
                )

                # Change integer-ids to tokens
                token = tokenizer.ids2tokens(token_int)
                # text = tokenizer.tokens2text(token)

                result_i = token

                results.extend(result_i)

        return results

    def inference(
        self,
        data_in,
        data_lengths=None,
        key: list = None,
        tokenizer=None,
        frontend=None,
        cache: dict = {},
        **kwargs,
    ):

        # init beamsearch
        is_use_ctc = (
            kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
        )
        is_use_lm = (
            kwargs.get("lm_weight", 0.0) > 0.00001
            and kwargs.get("lm_file", None) is not None
        )
        if self.beam_search is None and (is_use_lm or is_use_ctc):
            logging.info("enable beam_search")
            self.init_beam_search(**kwargs)
            self.nbest = kwargs.get("nbest", 1)

        if len(cache) == 0:
            self.init_cache(cache, **kwargs)

        meta_data = {}
        chunk_size = kwargs.get("chunk_size", [0, 10, 5])
        chunk_stride_samples = int(chunk_size[1] * 960)  # 600ms

        time1 = time.perf_counter()
        cfg = {"is_final": kwargs.get("is_final", False)}
        audio_sample_list = load_audio_text_image_video(
            data_in,
            fs=frontend.fs,
            audio_fs=kwargs.get("fs", 16000),
            data_type=kwargs.get("data_type", "sound"),
            tokenizer=tokenizer,
            cache=cfg,
        )
        # import pdb; pdb.set_trace()
        _is_final = cfg["is_final"]  # if data_in is a file or url, set is_final=True

        time2 = time.perf_counter()
        meta_data["load_data"] = f"{time2 - time1:0.3f}"
        assert len(audio_sample_list) == 1, "batch_size must be set 1"

        audio_sample = torch.cat((cache["prev_samples"], audio_sample_list[0]))

        n = int(len(audio_sample) // chunk_stride_samples + int(_is_final))
        m = int(len(audio_sample) % chunk_stride_samples * (1 - int(_is_final)))
        tokens = []
        for i in range(n):
            kwargs["is_final"] = _is_final and i == n - 1
            audio_sample_i = audio_sample[
                i * chunk_stride_samples : (i + 1) * chunk_stride_samples
            ]

            # extract fbank feats
            speech, speech_lengths = extract_fbank(
                [audio_sample_i],
                data_type=kwargs.get("data_type", "sound"),
                frontend=frontend,
                cache=cache["frontend"],
                is_final=kwargs["is_final"],
            )
            time3 = time.perf_counter()
            meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
            meta_data["batch_data_time"] = (
                speech_lengths.sum().item()
                * frontend.frame_shift
                * frontend.lfr_n
                / 1000
            )
            if len(speech) == 0:
                break
            tokens_i = self.generate_chunk(
                speech,
                speech_lengths,
                key=key,
                tokenizer=tokenizer,
                cache=cache,
                frontend=frontend,
                **kwargs,
            )
            tokens.extend(tokens_i)

        text_postprocessed, _ = postprocess_utils.sentence_postprocess(tokens)

        result_i = {"key": key[0], "text": text_postprocessed}
        result = [result_i]

        cache["prev_samples"] = audio_sample[:-m]
        if _is_final:
            self.init_cache(cache, **kwargs)

        if kwargs.get("output_dir"):
            if not hasattr(self, "writer"):
                self.writer = DatadirWriter(kwargs.get("output_dir"))
            ibest_writer = self.writer[f"{1}best_recog"]
            ibest_writer["token"][key[0]] = " ".join(tokens)
            ibest_writer["text"][key[0]] = text_postprocessed

        return result, meta_data

    def infer_encoder(
        self,
        data_in,
        data_lengths=None,
        key: list = None,
        tokenizer=None,
        frontend=None,
        cache: dict = {},
        **kwargs,
    ):
        if len(cache) == 0:
            self.init_cache(cache, **kwargs)

        meta_data = {}
        chunk_size = kwargs.get("chunk_size", [0, 10, 5])
        chunk_stride_samples = int(chunk_size[1] * 960)  # 600ms

        time1 = time.perf_counter()
        cfg = {"is_final": kwargs.get("is_final", False)}
        if isinstance(data_in[0], torch.Tensor):
            audio_sample_list = data_in
        else:
            audio_sample_list = load_audio_text_image_video(
                data_in,
                fs=frontend.fs,
                audio_fs=kwargs.get("fs", 16000),
                data_type=kwargs.get("data_type", "sound"),
                tokenizer=tokenizer,
                cache=cfg,
            )

        _is_final = cfg["is_final"]  # if data_in is a file or url, set is_final=True
        time2 = time.perf_counter()
        meta_data["load_data"] = f"{time2 - time1:0.3f}"
        assert len(audio_sample_list) == 1, "batch_size must be set 1"

        audio_sample = torch.cat((cache["prev_samples"], audio_sample_list[0]))

        n = int(len(audio_sample) // chunk_stride_samples + int(_is_final))
        m = int(len(audio_sample) % chunk_stride_samples * (1 - int(_is_final)))
        encoder_outs = []
        meta_data["batch_data_time"] = 0.0
        meta_data["extract_feat"] = 0.0
        for i in range(n):
            kwargs["is_final"] = _is_final and i == n - 1
            audio_sample_i = audio_sample[
                i * chunk_stride_samples : (i + 1) * chunk_stride_samples
            ]
            time2 = time.perf_counter()
            # extract fbank feats
            if kwargs["is_final"] and len(audio_sample_i) == 0:
                break
            try:
                speech, speech_lengths = extract_fbank(
                    [audio_sample_i],
                    data_type=kwargs.get("data_type", "sound"),
                    frontend=frontend,
                    cache=cache["frontend"],
                    is_final=kwargs["is_final"],
                )
            except:
                if i == n - 1 and audio_sample_i.shape[0] < 480:
                    print(f"Warning!!!, skip {audio_sample_i.shape[0]} samples")
                    break
                else:
                    raise RuntimeError("infer failed")
            time3 = time.perf_counter()
            if len(speech) == 0 and kwargs["is_final"]:
                break
            meta_data["extract_feat"] = meta_data["extract_feat"] + time3 - time2
            meta_data["batch_data_time"] = (
                meta_data["batch_data_time"]
                + speech_lengths.sum().item()
                * frontend.frame_shift
                * frontend.lfr_n
                / 1000
            )
            speech = speech.to(device=kwargs["device"])
            speech_lengths = speech_lengths.to(device=kwargs["device"])
            encoder_out, encoder_out_lens = self.encode_chunk(
                speech,
                speech_lengths,
                cache=cache,
                is_final=kwargs.get("is_final", False),
            )
            encoder_outs.append(encoder_out[:, (-speech_lengths[0]) :])

            if i == n - 1:
                break
        speech_out = []
        if len(encoder_outs) > 0:
            speech_out = torch.cat(encoder_outs, dim=1)
        result_i = {"key": key[0], "enc_out": speech_out}
        result = [result_i]

        if m > 0:  # tail exists
            cache["prev_samples"] = audio_sample[-m:]
        else:
            cache["prev_samples"] = torch.empty(0)

        if _is_final:
            self.init_cache(cache, **kwargs)

        return result, meta_data, cache