Spaces:
Running
Running
File size: 1,199 Bytes
cd93597 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import numpy as np
from typing import Callable, Dict
from sklearn.base import BaseEstimator, TransformerMixin
class CustomNormalizer(BaseEstimator, TransformerMixin):
"""
This class exist only to fit in pipeline format
"""
def __init__(self, method="z-score"):
self.method = method
def fit(self, X, y=None):
return self
def transform(self, X):
X_array = np.array(X)
return NormalizationTools.normalize(X_array, self.method)
class NormalizationTools:
@staticmethod
def l2(matrix: np.ndarray) -> np.ndarray:
norms = np.linalg.norm(matrix, axis=1, keepdims=True)
norms[norms == 0] = 1
return matrix / norms
# Dispatcher method
@staticmethod
def normalize(matrix: np.ndarray, method: str) -> np.ndarray:
method_map: Dict[str, Callable[[np.ndarray], np.ndarray]] = {
"l2": NormalizationTools.l2,
}
if method not in method_map:
raise ValueError(
f"Unknown normalization method '{method}', verify config file."
f"Available methods: {list(method_map.keys())}"
)
return method_map[method](matrix)
|