kostissz commited on
Commit
cd93597
·
unverified ·
1 Parent(s): 5513470

add demo files

Browse files
Files changed (5) hide show
  1. app.py +128 -0
  2. audios/a.txt +0 -0
  3. model/a.txt +0 -0
  4. normalization.py +43 -0
  5. requirements.txt +1 -0
app.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import pandas as pd
4
+ import altair as alt
5
+
6
+ import io
7
+ import streamlit as st
8
+ from fake_audio_detection.model import predict_audio_blocks
9
+
10
+ parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
11
+ sys.path.append(parent_dir)
12
+
13
+
14
+ st.title("🔎 DeepVoice Detection")
15
+
16
+ APP_DIR = os.path.dirname(os.path.abspath(__file__))
17
+
18
+ # if you want to code your training part
19
+ DATASET_DIR = os.path.join(APP_DIR, "dataset/")
20
+ MODEL_PATH = os.path.join(APP_DIR, "model/noma-1")
21
+
22
+ REAL_DIR = os.path.join(APP_DIR, "audios/real")
23
+ FAKE_DIR = os.path.join(APP_DIR, "audios/fake")
24
+
25
+ # Then continue as before
26
+ real_audio = {
27
+ f"Real - {f}": os.path.join(REAL_DIR, f)
28
+ for f in os.listdir(REAL_DIR)
29
+ if f.endswith((".wav", ".mp3"))
30
+ }
31
+ fake_audio = {
32
+ f"Fake - {f}": os.path.join(FAKE_DIR, f)
33
+ for f in os.listdir(FAKE_DIR)
34
+ if f.endswith((".wav", ".mp3"))
35
+ }
36
+ all_audio = {**real_audio, **fake_audio}
37
+
38
+ selected_label = st.radio("Select an audio file to play:", list(all_audio.keys()))
39
+ selected_path = all_audio[selected_label]
40
+
41
+ st.write("#### Try with your audios")
42
+ uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "ogg"])
43
+
44
+ selected_label = "Default Audio"
45
+
46
+ if uploaded_file is not None:
47
+ st.markdown(f"**Now Playing:** `{uploaded_file.name}`")
48
+ audio_bytes = uploaded_file.read()
49
+ file_extension = uploaded_file.name.split(".")[-1].lower()
50
+ st.audio(audio_bytes, format=f"audio/{file_extension}")
51
+ else:
52
+ st.markdown(f"**Now Playing:** `{selected_label}`")
53
+ with open(selected_path, "rb") as audio_file:
54
+ audio_bytes = audio_file.read()
55
+ st.audio(audio_bytes, format="audio/wav")
56
+
57
+
58
+ if st.button("Run Prediction") and os.path.exists(MODEL_PATH):
59
+ audio_bytes = None
60
+ if uploaded_file:
61
+ bytes_data = uploaded_file.getvalue()
62
+ audio_bytes = io.BytesIO(bytes_data)
63
+ with st.spinner("Analyzing audio..."):
64
+ times, probas = predict_audio_blocks(MODEL_PATH, selected_path, audio_bytes)
65
+
66
+ preds = probas.argmax(axis=1)
67
+ confidences = probas.max(axis=1)
68
+ preds_as_string = ["Fake" if i == 0 else "Real" for i in preds]
69
+ df = pd.DataFrame(
70
+ {"Seconds": times, "Prediction": preds_as_string, "Confidence": confidences}
71
+ )
72
+
73
+ def get_color(row):
74
+ if row["Confidence"] < 0.3:
75
+ return "Uncertain"
76
+ return row["Prediction"]
77
+
78
+ df["Confidence Level"] = df.apply(get_color, axis=1)
79
+
80
+ # Plot
81
+ st.markdown("### Prediction by 1s Blocks")
82
+ st.markdown(
83
+ "Hover above each bar to see the confidence level of each prediction."
84
+ )
85
+ chart = (
86
+ alt.Chart(df)
87
+ .mark_bar()
88
+ .encode(
89
+ x=alt.X("Seconds:O", title="Seconds"),
90
+ y=alt.value(30),
91
+ color=alt.Color(
92
+ "Confidence Level:N",
93
+ scale=alt.Scale(
94
+ domain=["Fake", "Real", "Uncertain"],
95
+ range=["steelblue", "green", "gray"],
96
+ ),
97
+ ),
98
+ tooltip=["Seconds", "Prediction", "Confidence"],
99
+ )
100
+ .properties(width=700, height=150)
101
+ )
102
+
103
+ text = (
104
+ alt.Chart(df)
105
+ .mark_text(
106
+ align="right",
107
+ baseline="top",
108
+ dy=10,
109
+ color="white",
110
+ xOffset=10,
111
+ yOffset=-20,
112
+ fontSize=14,
113
+ )
114
+ .encode(x=alt.X("Seconds:O"), y=alt.value(15), text="Prediction:N")
115
+ )
116
+
117
+ st.altair_chart(chart + text, use_container_width=True)
118
+
119
+ st.markdown("### Overall prediction")
120
+ if all(element == "Real" for element in preds_as_string):
121
+ st.markdown("The audio is **Real**")
122
+ elif all(element == "Fake" for element in preds_as_string):
123
+ st.markdown("The audio is **Fake**")
124
+ else:
125
+ st.markdown("Some parts of the audio have been detected as **Fake**")
126
+
127
+ elif not os.path.exists(MODEL_PATH):
128
+ st.warning(f"Missing model: {MODEL_PATH}")
audios/a.txt ADDED
File without changes
model/a.txt ADDED
File without changes
normalization.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from typing import Callable, Dict
3
+
4
+ from sklearn.base import BaseEstimator, TransformerMixin
5
+
6
+
7
+ class CustomNormalizer(BaseEstimator, TransformerMixin):
8
+ """
9
+ This class exist only to fit in pipeline format
10
+ """
11
+
12
+ def __init__(self, method="z-score"):
13
+ self.method = method
14
+
15
+ def fit(self, X, y=None):
16
+ return self
17
+
18
+ def transform(self, X):
19
+ X_array = np.array(X)
20
+ return NormalizationTools.normalize(X_array, self.method)
21
+
22
+
23
+ class NormalizationTools:
24
+ @staticmethod
25
+ def l2(matrix: np.ndarray) -> np.ndarray:
26
+ norms = np.linalg.norm(matrix, axis=1, keepdims=True)
27
+ norms[norms == 0] = 1
28
+ return matrix / norms
29
+
30
+ # Dispatcher method
31
+ @staticmethod
32
+ def normalize(matrix: np.ndarray, method: str) -> np.ndarray:
33
+ method_map: Dict[str, Callable[[np.ndarray], np.ndarray]] = {
34
+ "l2": NormalizationTools.l2,
35
+ }
36
+
37
+ if method not in method_map:
38
+ raise ValueError(
39
+ f"Unknown normalization method '{method}', verify config file."
40
+ f"Available methods: {list(method_map.keys())}"
41
+ )
42
+
43
+ return method_map[method](matrix)
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ git+https://github.com/mozilla-ai/fake-audio-detection.git