File size: 7,176 Bytes
0cfb559
2e8fc61
 
 
 
0cfb559
 
 
 
 
 
 
2e8fc61
 
 
 
 
 
37e70be
2e8fc61
 
0cfb559
 
 
 
 
 
 
2e8fc61
 
 
0cfb559
2e8fc61
 
 
 
 
0cfb559
 
 
 
2e8fc61
0cfb559
2e8fc61
 
0cfb559
2e8fc61
 
 
 
 
 
 
 
0cfb559
 
 
2e8fc61
0cfb559
 
2e8fc61
 
0cfb559
 
2e8fc61
 
0cfb559
 
2e8fc61
0cfb559
 
 
 
 
 
 
 
 
 
2e8fc61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfb559
 
 
 
 
 
2e8fc61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfb559
2e8fc61
 
0cfb559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e8fc61
 
 
 
 
0cfb559
2e8fc61
 
 
 
 
 
 
 
0cfb559
2e8fc61
 
 
 
0cfb559
2e8fc61
 
 
 
0cfb559
2e8fc61
 
 
 
0cfb559
 
 
 
 
 
 
 
 
 
 
2e8fc61
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import json
from typing import Dict, Tuple
import os
import gradio as gr
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import (
    PdfPipelineOptions,
    EasyOcrOptions,
    TesseractOcrOptions,
    RapidOcrOptions,
    OcrMacOptions,
)
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling_core.types import DoclingDocument
from docling.utils import model_downloader

# Download models upon HF space initialization
if os.getenv("IS_HF_SPACE"):
    print("Downloading models...")
    model_downloader.download_models()

engines_available = {
    "EasyOCR (Default)": EasyOcrOptions(),
    "Tesseract": TesseractOcrOptions(),
    "RapidOCR": RapidOcrOptions(),
    "OcrMac (Mac only)": OcrMacOptions(),
}


def parse_document(
    file_path: str,
    engine: str,
    do_code_enrichment: bool,
    do_formula_enrichment: bool,
) -> Tuple[DoclingDocument, str]:
    yield None, f"Parsing document... ⏳"

    pdf_pipeline_options = PdfPipelineOptions()
    pdf_pipeline_options.ocr_options = engines_available[engine]
    pdf_pipeline_options.do_code_enrichment = do_code_enrichment
    pdf_pipeline_options.do_formula_enrichment = do_formula_enrichment

    print(f"PDF Pipeline options defined: \n\t{pdf_pipeline_options}")
    converter = DocumentConverter(
        format_options={
            InputFormat.PDF: PdfFormatOption(pipeline_options=pdf_pipeline_options)
        }
    )

    result = converter.convert(file_path)

    yield result.document, "Done βœ…"


def to_html(docling_doc: DoclingDocument) -> Tuple[str, str]:
    return docling_doc.export_to_html(), "html"


def to_markdown(docling_doc: DoclingDocument) -> Tuple[str, str]:
    return docling_doc.export_to_markdown(), "md"


def to_json(docling_doc: DoclingDocument) -> Tuple[Dict, str]:
    return docling_doc.export_to_dict(), "json"


def to_text(docling_doc: DoclingDocument) -> Tuple[str, str]:
    return docling_doc.export_to_text(), "txt"


def download_file(doc: str | Dict, file_extension: str):
    final_filename = f"doc.{file_extension}"
    if file_extension == "json":
        with open(final_filename, "w") as json_file:
            json.dump(doc, json_file, indent=4)
    else:
        with open(final_filename, "w") as file:
            file.write(doc)
    return [final_filename, "Downloaded βœ…"]


def upload_file(file) -> str:
    return file.name


def setup_gradio_demo():
    with gr.Blocks() as demo:
        gr.Markdown(
            """ # Docling - OCR: Parse documents, images, spreadsheets and more to markdown or other formats!
            
            Docling is very powerful tool, with lots of cool features and integrations to other AI frameworks (e.g. LlamaIndex, LangChain, and many more).

            To explore the full set of features of Docling visit: https://github.com/docling-project/docling
            """
        )

        with gr.Row():
            with gr.Column():
                gr.Markdown("### 1) Upload")
                file_output = gr.File(
                    file_count="single",
                    file_types=[
                        ".pdf",
                        ".docx",
                        ".pptx",
                        ".csv",
                        ".md",
                        ".png",
                        ".jpg",
                        ".tiff",
                        ".bmp",
                        ".html",
                        ".xhtml",
                        ".xlsx",
                    ],
                )

            with gr.Column():
                gr.Markdown("### 2) Configure engine (Only applicable for PDF files)")

                ocr_engine = gr.Dropdown(
                    choices=list(engines_available.keys()), label="Select OCR engine"
                )

                code_understanding = gr.Checkbox(
                    value=False, label="Enable Code understanding"
                )
                formula_enrichment = gr.Checkbox(
                    value=False, label="Enable Formula understanding"
                )

                parse_button = gr.Button("Parse document")
                status = gr.Markdown()
            with gr.Column():
                gr.Markdown("### 3) Convert")

                html_button = gr.Button("Convert to HTML")
                markdown_button = gr.Button("Convert to markdown")
                json_button = gr.Button("Convert to JSON")
                text_button = gr.Button("Convert to text")
                file_extension = gr.Text(visible=False)

        doc = gr.State()
        with gr.Column():
            with gr.Group():
                output = gr.Textbox(
                    label="Output",
                    lines=10,
                    interactive=False,
                    elem_id="output-textbox",
                )
                gr.HTML(
                    """
                    <div style="display: flex; flex-direction: column; align-items: center;">
                      <button id="copy-button" onclick="const text = document.getElementById('output-textbox').querySelector('textarea').value; navigator.clipboard.writeText(text); const copiedMsg = document.getElementById('copied-msg'); copiedMsg.style.display = 'inline'; setTimeout(() => copiedMsg.style.display = 'none', 1500);" style="margin-top: 10px;">
                        πŸ“‹ Copy output to clipboard
                      </button>
                      <span id="copied-msg" style="margin-left: 10px; color: green; display: none;">Copied!</span>
                    </div>
                    """
                )

        download_button = gr.Button("Download to file")
        # See https://github.com/gradio-app/gradio/issues/9230#issuecomment-2323771634 why this button
        download_button_hidden = gr.DownloadButton(
            visible=False, elem_id="download_btn_hidden"
        )
        download_status = gr.Markdown()

        parse_button.click(
            fn=parse_document,
            inputs=[
                file_output,
                ocr_engine,
                code_understanding,
                formula_enrichment,
            ],
            outputs=[doc, status],
        )
        html_button.click(
            fn=to_html,
            inputs=doc,
            outputs=[output, file_extension],
        )
        markdown_button.click(
            fn=to_markdown,
            inputs=doc,
            outputs=[output, file_extension],
        )
        json_button.click(
            fn=to_json,
            inputs=doc,
            outputs=[output, file_extension],
        )
        text_button.click(
            fn=to_text,
            inputs=doc,
            outputs=[output, file_extension],
        )
        download_button.click(
            fn=download_file,
            inputs=[output, file_extension],
            outputs=[download_button_hidden, download_status],
        ).then(
            fn=None,
            inputs=None,
            outputs=None,
            js="() => document.querySelector('#download_btn_hidden').click()",
        )

    demo.launch()


if __name__ == "__main__":
    setup_gradio_demo()