Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,22 @@
|
|
1 |
from typing import Dict, Tuple
|
2 |
import os
|
3 |
import gradio as gr
|
|
|
4 |
from docling.datamodel.base_models import InputFormat
|
5 |
-
from docling.datamodel.pipeline_options import PdfPipelineOptions
|
6 |
from docling.document_converter import DocumentConverter, PdfFormatOption
|
7 |
from docling_core.types import DoclingDocument
|
8 |
from docling.utils import model_downloader
|
9 |
from docling.datamodel.pipeline_options import smolvlm_picture_description
|
10 |
|
11 |
# Download models upon HF space initialization
|
|
|
|
|
|
|
|
|
|
|
12 |
if os.getenv("IS_HF_SPACE"):
|
|
|
13 |
model_downloader.download_models()
|
14 |
|
15 |
|
@@ -22,14 +29,17 @@ def parse_document(
|
|
22 |
) -> Tuple[DoclingDocument, str]:
|
23 |
yield None, f"Parsing document... ⏳"
|
24 |
|
25 |
-
pipeline_options = PdfPipelineOptions()
|
26 |
pipeline_options.do_code_enrichment = do_code_enrichment
|
27 |
pipeline_options.do_formula_enrichment = do_formula_enrichment
|
28 |
pipeline_options.generate_picture_images = do_picture_classification
|
29 |
pipeline_options.images_scale = 2
|
30 |
pipeline_options.do_picture_classification = do_picture_classification
|
|
|
31 |
pipeline_options.do_picture_description = do_picture_description
|
32 |
pipeline_options.picture_description_options = smolvlm_picture_description
|
|
|
|
|
|
|
33 |
|
34 |
print(f"Pipeline options defined: \n\t{pipeline_options}")
|
35 |
converter = DocumentConverter(
|
|
|
1 |
from typing import Dict, Tuple
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
+
import torch.cuda
|
5 |
from docling.datamodel.base_models import InputFormat
|
6 |
+
from docling.datamodel.pipeline_options import PdfPipelineOptions, AcceleratorDevice
|
7 |
from docling.document_converter import DocumentConverter, PdfFormatOption
|
8 |
from docling_core.types import DoclingDocument
|
9 |
from docling.utils import model_downloader
|
10 |
from docling.datamodel.pipeline_options import smolvlm_picture_description
|
11 |
|
12 |
# Download models upon HF space initialization
|
13 |
+
pipeline_options = PdfPipelineOptions()
|
14 |
+
if torch.cuda.is_available():
|
15 |
+
print("Enabling CUDA Accelerator")
|
16 |
+
pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
|
17 |
+
pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
|
18 |
if os.getenv("IS_HF_SPACE"):
|
19 |
+
print("Downloading models...")
|
20 |
model_downloader.download_models()
|
21 |
|
22 |
|
|
|
29 |
) -> Tuple[DoclingDocument, str]:
|
30 |
yield None, f"Parsing document... ⏳"
|
31 |
|
|
|
32 |
pipeline_options.do_code_enrichment = do_code_enrichment
|
33 |
pipeline_options.do_formula_enrichment = do_formula_enrichment
|
34 |
pipeline_options.generate_picture_images = do_picture_classification
|
35 |
pipeline_options.images_scale = 2
|
36 |
pipeline_options.do_picture_classification = do_picture_classification
|
37 |
+
|
38 |
pipeline_options.do_picture_description = do_picture_description
|
39 |
pipeline_options.picture_description_options = smolvlm_picture_description
|
40 |
+
pipeline_options.picture_description_options.prompt = "Describe the image in three sentences. Be concise and accurate."
|
41 |
+
pipeline_options.images_scale = 2.0
|
42 |
+
pipeline_options.generate_picture_images = True
|
43 |
|
44 |
print(f"Pipeline options defined: \n\t{pipeline_options}")
|
45 |
converter = DocumentConverter(
|