|
|
|
import os |
|
import torch |
|
import gradio as gr |
|
import numpy as np |
|
import json |
|
from PIL import Image, ImageDraw, ImageFont |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from diffusers import StableDiffusionPipeline |
|
import time |
|
import random |
|
|
|
|
|
try: |
|
from fastchat.model import get_conversation_template |
|
except ImportError: |
|
|
|
print("FastChat not found. Installing...") |
|
os.system("pip install fschat") |
|
from fastchat.model import get_conversation_template |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
print(f"Using device: {device}") |
|
|
|
|
|
global_dict = {} |
|
|
|
class TextDiffuserLayoutPlanner: |
|
""" |
|
Implementation focused on the layout planning aspect of TextDiffuser-2 |
|
""" |
|
def __init__(self): |
|
|
|
self.layout_model_path = "JingyeChen22/textdiffuser2_layout_planner" |
|
|
|
print(f"Loading layout planner model from {self.layout_model_path}...") |
|
|
|
try: |
|
|
|
self.layout_tokenizer = AutoTokenizer.from_pretrained( |
|
self.layout_model_path, |
|
use_fast=False |
|
) |
|
|
|
|
|
model_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
self.layout_model = AutoModelForCausalLM.from_pretrained( |
|
self.layout_model_path, |
|
torch_dtype=model_dtype, |
|
low_cpu_mem_usage=True |
|
).to(device) |
|
|
|
print("Layout planner model loaded successfully") |
|
except Exception as e: |
|
print(f"Error loading layout planner: {e}") |
|
print("Falling back to simpler implementation...") |
|
|
|
self.layout_model = None |
|
self.layout_tokenizer = None |
|
|
|
|
|
|
|
self.diffusion_model = None |
|
if torch.cuda.is_available(): |
|
try: |
|
self.diffusion_model = StableDiffusionPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", |
|
torch_dtype=torch.float16 |
|
).to(device) |
|
print("Diffusion model loaded for context visualization") |
|
except Exception as e: |
|
print(f"Could not load diffusion model: {e}") |
|
print("Will use placeholder images instead") |
|
|
|
def generate_layout(self, prompt, keywords="", image_size=(512, 512), temperature=0.7): |
|
""" |
|
Generate a text layout based on the prompt using the layout planner model |
|
|
|
Args: |
|
prompt: Description of the image to generate |
|
keywords: Optional keywords to include in the layout (format: "word1/word2/...") |
|
image_size: Size of the target image (width, height) |
|
temperature: Temperature for layout generation (higher = more diverse) |
|
|
|
Returns: |
|
layout_elements: List of text elements with positions |
|
layout_text: Raw output from the layout planner |
|
layout_image: Visualization of the layout |
|
""" |
|
width, height = image_size |
|
|
|
|
|
if self.layout_model is not None and self.layout_tokenizer is not None: |
|
|
|
if len(keywords.strip()) == 0: |
|
template = f'Given a prompt that will be used to generate an image, plan the layout of visual text for the image. The size of the image is {width//4}x{height//4}. Therefore, all properties of the positions should not exceed {width//4}, including the coordinates of top, left, right, and bottom. All keywords are included in the caption. You dont need to specify the details of font styles. At each line, the format should be keyword left, top, right, bottom. So let us begin. Prompt: {prompt}' |
|
else: |
|
keywords_list = keywords.split('/') |
|
keywords_list = [k.strip() for k in keywords_list] |
|
template = f'Given a prompt that will be used to generate an image, plan the layout of visual text for the image. The size of the image is {width//4}x{height//4}. Therefore, all properties of the positions should not exceed {width//4}, including the coordinates of top, left, right, and bottom. In addition, we also provide all keywords at random order for reference. You dont need to specify the details of font styles. At each line, the format should be keyword left, top, right, bottom. So let us begin. Prompt: {prompt}. Keywords: {str(keywords_list)}' |
|
|
|
|
|
conv = get_conversation_template(self.layout_model_path) |
|
conv.append_message(conv.roles[0], template) |
|
conv.append_message(conv.roles[1], None) |
|
prompt_text = conv.get_prompt() |
|
|
|
|
|
time_start = time.time() |
|
print(f"Generating layout for prompt: {prompt}") |
|
|
|
|
|
inputs = self.layout_tokenizer([prompt_text], return_token_type_ids=False) |
|
inputs = {k: torch.tensor(v).to(device) for k, v in inputs.items()} |
|
|
|
|
|
with torch.no_grad(): |
|
output_ids = self.layout_model.generate( |
|
**inputs, |
|
do_sample=True, |
|
temperature=temperature, |
|
repetition_penalty=1.0, |
|
max_new_tokens=512, |
|
) |
|
|
|
|
|
if self.layout_model.config.is_encoder_decoder: |
|
output_ids = output_ids[0] |
|
else: |
|
output_ids = output_ids[0][len(inputs["input_ids"][0]):] |
|
|
|
layout_text = self.layout_tokenizer.decode( |
|
output_ids, skip_special_tokens=True, spaces_between_special_tokens=False |
|
) |
|
|
|
time_end = time.time() |
|
print(f"Layout generation took {time_end - time_start:.2f} seconds") |
|
print(f"Layout output: {layout_text}") |
|
|
|
|
|
layout_elements = self.parse_layout_text(layout_text, image_size) |
|
|
|
|
|
layout_image = self.visualize_layout(layout_elements, image_size) |
|
|
|
else: |
|
|
|
print("Using fallback layout generation") |
|
layout_elements = self.generate_fallback_layout(prompt, keywords, image_size) |
|
layout_text = "Fallback layout generation - Layout planner model not available" |
|
layout_image = self.visualize_layout(layout_elements, image_size) |
|
|
|
return layout_elements, layout_text, layout_image |
|
|
|
def parse_layout_text(self, layout_text, image_size=(512, 512)): |
|
""" |
|
Parse the layout text from the layout planner to extract text elements |
|
|
|
Args: |
|
layout_text: Output text from the layout planner |
|
image_size: Size of the target image |
|
|
|
Returns: |
|
layout_elements: List of text elements with positions |
|
""" |
|
layout_elements = [] |
|
lines = layout_text.strip().split('\n') |
|
|
|
for line in lines: |
|
line = line.strip() |
|
if not line or '###' in line or '.com' in line: |
|
continue |
|
|
|
try: |
|
|
|
parts = line.split() |
|
if len(parts) < 5: |
|
continue |
|
|
|
|
|
coords = parts[-1] |
|
text = ' '.join(parts[:-1]) |
|
|
|
|
|
try: |
|
l, t, r, b = map(int, coords.split(',')) |
|
|
|
|
|
l, t, r, b = l*4, t*4, r*4, b*4 |
|
|
|
|
|
element = { |
|
"text": text, |
|
"position": (l, t), |
|
"size": (r-l, b-t), |
|
"box": (l, t, r, b), |
|
"style": { |
|
"font": "Arial", |
|
"size": 24, |
|
"color": (0, 0, 0) |
|
} |
|
} |
|
layout_elements.append(element) |
|
except ValueError: |
|
print(f"Could not parse coordinates in line: {line}") |
|
continue |
|
|
|
except Exception as e: |
|
print(f"Error parsing layout line: {e}") |
|
continue |
|
|
|
return layout_elements |
|
|
|
def generate_fallback_layout(self, prompt, keywords="", image_size=(512, 512)): |
|
""" |
|
Generate a fallback layout when the layout planner is not available |
|
|
|
Args: |
|
prompt: Description of the image |
|
keywords: Optional keywords to include |
|
image_size: Size of the target image |
|
|
|
Returns: |
|
layout_elements: List of text elements with positions |
|
""" |
|
width, height = image_size |
|
layout_elements = [] |
|
|
|
|
|
if keywords: |
|
keywords_list = keywords.split('/') |
|
keywords_list = [k.strip() for k in keywords_list] |
|
else: |
|
|
|
words = prompt.split() |
|
keywords_list = [word for word in words if len(word) > 3 and word.isalpha()] |
|
keywords_list = keywords_list[:3] |
|
|
|
|
|
for i, keyword in enumerate(keywords_list): |
|
|
|
row = i // 2 |
|
col = i % 2 |
|
|
|
l = 50 + col * (width // 2) |
|
t = 50 + row * (height // 3) |
|
r = l + 200 |
|
b = t + 50 |
|
|
|
element = { |
|
"text": keyword, |
|
"position": (l, t), |
|
"size": (r-l, b-t), |
|
"box": (l, t, r, b), |
|
"style": { |
|
"font": "Arial", |
|
"size": 24, |
|
"color": (0, 0, 0) |
|
} |
|
} |
|
layout_elements.append(element) |
|
|
|
return layout_elements |
|
|
|
def visualize_layout(self, layout_elements, image_size=(512, 512)): |
|
""" |
|
Create a visualization of the text layout |
|
|
|
Args: |
|
layout_elements: List of text elements with positions |
|
image_size: Size of the target image |
|
|
|
Returns: |
|
layout_image: Visualization of the layout |
|
""" |
|
width, height = image_size |
|
image = Image.new("RGB", image_size, (240, 240, 240)) |
|
draw = ImageDraw.Draw(image) |
|
|
|
|
|
for x in range(0, width, 32): |
|
alpha = 255 if x % 128 == 0 else 100 |
|
draw.line([(x, 0), (x, height)], fill=(200, 200, 200, alpha), width=1) |
|
|
|
for y in range(0, height, 32): |
|
alpha = 255 if y % 128 == 0 else 100 |
|
draw.line([(0, y), (width, y)], fill=(200, 200, 200, alpha), width=1) |
|
|
|
|
|
try: |
|
font_large = ImageFont.truetype("Arial.ttf", 20) |
|
font_small = ImageFont.truetype("Arial.ttf", 12) |
|
except IOError: |
|
try: |
|
font_large = ImageFont.truetype("DejaVuSans.ttf", 20) |
|
font_small = ImageFont.truetype("DejaVuSans.ttf", 12) |
|
except IOError: |
|
font_large = ImageFont.load_default() |
|
font_small = ImageFont.load_default() |
|
|
|
|
|
for i, element in enumerate(layout_elements): |
|
box = element.get("box", (0, 0, 0, 0)) |
|
text = element["text"] |
|
|
|
|
|
draw.rectangle(box, outline=(255, 0, 0), width=2) |
|
|
|
|
|
draw.text( |
|
(box[0] + 5, box[1] - 20), |
|
f"{i+1}: {text}", |
|
font=font_small, |
|
fill=(0, 0, 0) |
|
) |
|
|
|
|
|
coord_text = f"({box[0]},{box[1]}) to ({box[2]},{box[3]})" |
|
draw.text( |
|
(box[0] + 5, box[3] + 5), |
|
coord_text, |
|
font=font_small, |
|
fill=(0, 0, 255) |
|
) |
|
|
|
return image |
|
|
|
def generate_context_image(self, prompt, image_size=(512, 512)): |
|
""" |
|
Generate a context image based on the prompt |
|
|
|
Args: |
|
prompt: Description of the image |
|
image_size: Size of the target image |
|
|
|
Returns: |
|
image: Generated or placeholder image |
|
""" |
|
if self.diffusion_model is not None: |
|
|
|
try: |
|
images = self.diffusion_model( |
|
prompt=prompt, |
|
height=image_size[1], |
|
width=image_size[0], |
|
num_inference_steps=20 |
|
).images |
|
return images[0] |
|
except Exception as e: |
|
print(f"Error generating image: {e}") |
|
print("Using placeholder image instead") |
|
|
|
|
|
width, height = image_size |
|
image = Image.new("RGB", image_size, (240, 240, 240)) |
|
|
|
|
|
for y in range(height): |
|
for x in range(width): |
|
r = int(240 - 30 * (y / height)) |
|
g = int(240 - 20 * (x / width)) |
|
b = int(240 - 40 * ((x + y) / (width + height))) |
|
image.putpixel((x, y), (r, g, b)) |
|
|
|
return image |
|
|
|
def process_request(self, prompt, keywords="", width=512, height=512, temperature=0.7, generate_image=False): |
|
""" |
|
Process a user request to generate a layout |
|
|
|
Args: |
|
prompt: Description of the image |
|
keywords: Optional keywords to include |
|
width: Width of the target image |
|
height: Height of the target image |
|
temperature: Temperature for layout generation |
|
generate_image: Whether to generate a context image |
|
|
|
Returns: |
|
layout_elements: List of text elements with positions |
|
layout_text: Raw output from the layout planner |
|
layout_image: Visualization of the layout |
|
context_image: Generated or placeholder image (if requested) |
|
""" |
|
image_size = (width, height) |
|
|
|
|
|
layout_elements, layout_text, layout_image = self.generate_layout( |
|
prompt, keywords, image_size, temperature |
|
) |
|
|
|
|
|
context_image = None |
|
if generate_image: |
|
context_image = self.generate_context_image(prompt, image_size) |
|
|
|
|
|
layout_data = { |
|
"prompt": prompt, |
|
"keywords": keywords, |
|
"image_size": image_size, |
|
"text_elements": layout_elements, |
|
} |
|
|
|
return layout_elements, layout_text, layout_image, context_image, layout_data |
|
|
|
|
|
model = TextDiffuserLayoutPlanner() |
|
|
|
|
|
with gr.Blocks(title="TextDiffuser-2 Layout Planner") as demo: |
|
gr.Markdown(""" |
|
# TextDiffuser-2 Layout Planner |
|
|
|
This application focuses on the layout planning aspect of TextDiffuser-2. It allows you to: |
|
|
|
1. Generate text layouts for images based on prompts |
|
2. Visualize the layout with text positions and bounding boxes |
|
3. Export the layout information for use in your own HTML5 Canvas UI editor |
|
|
|
Based on the paper "[TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering](https://arxiv.org/abs/2311.16465)" by Jingye Chen et al. |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
prompt_input = gr.Textbox( |
|
label="Prompt", |
|
value="A beautiful city skyline stamp of Shanghai", |
|
lines=3, |
|
placeholder="Describe the image you want to generate with text elements" |
|
) |
|
|
|
keywords_input = gr.Textbox( |
|
label="Optional Keywords (separated by /)", |
|
placeholder="keyword1/keyword2/keyword3", |
|
info="If provided, the layout planner will try to use these keywords" |
|
) |
|
|
|
with gr.Row(): |
|
width_input = gr.Number(label="Width", value=512, minimum=256, maximum=1024, step=64) |
|
height_input = gr.Number(label="Height", value=512, minimum=256, maximum=1024, step=64) |
|
|
|
temperature_input = gr.Slider( |
|
label="Temperature", |
|
minimum=0.1, |
|
maximum=2.0, |
|
value=0.7, |
|
step=0.1, |
|
info="Controls randomness in layout generation. Higher values produce more diverse layouts." |
|
) |
|
|
|
show_image_input = gr.Checkbox( |
|
label="Generate Context Image", |
|
value=False, |
|
info="Generate a simple image to provide context (this is just for visualization)" |
|
) |
|
|
|
generate_button = gr.Button("Generate Layout", variant="primary") |
|
|
|
gr.Markdown(""" |
|
## Tips for using this demo |
|
|
|
1. The layout planner works best with descriptive prompts |
|
2. You can specify keywords to ensure they appear in the layout |
|
3. Increase temperature for more diverse layouts |
|
4. The context image is optional and just for visualization |
|
""") |
|
|
|
with gr.Column(scale=2): |
|
with gr.Tabs(): |
|
with gr.TabItem("Layout Visualization"): |
|
layout_output = gr.Image(label="Text Layout Visualization", type="pil") |
|
|
|
with gr.TabItem("Context Image"): |
|
context_image_output = gr.Image(label="Context Image (Optional)", type="pil") |
|
|
|
with gr.TabItem("Layout Information"): |
|
layout_elements_output = gr.JSON(label="Layout Elements") |
|
|
|
with gr.TabItem("Raw Layout Output"): |
|
layout_text_output = gr.Textbox(label="Raw Layout Planner Output", lines=10) |
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
["A new year greeting card of happy 2024, surrounded by balloons", "", 512, 512, 0.7, True], |
|
["A beautiful city skyline stamp of Shanghai", "", 512, 512, 0.7, True], |
|
["The words 'KFC VIVO50' are inscribed upon the wall in a neon light effect", "KFC/VIVO50", 512, 512, 0.7, True], |
|
["A logo of superman", "", 512, 512, 0.7, True], |
|
["A pencil sketch of a tree with the title nothing to tree here", "nothing/tree/here", 512, 512, 0.7, True], |
|
["Delicate greeting card of happy birthday to xyz", "happy/birthday/xyz", 768, 512, 1.0, True], |
|
["Book cover of good morning baby", "good/morning/baby", 512, 768, 0.7, True], |
|
], |
|
inputs=[prompt_input, keywords_input, width_input, height_input, temperature_input, show_image_input] |
|
) |
|
|
|
|
|
def process_ui_request(prompt, keywords, width, height, temperature, show_image): |
|
try: |
|
width = int(width) |
|
height = int(height) |
|
|
|
layout_elements, layout_text, layout_image, context_image, layout_data = model.process_request( |
|
prompt, |
|
keywords, |
|
width, |
|
height, |
|
temperature, |
|
show_image |
|
) |
|
|
|
if show_image and context_image is not None: |
|
return layout_image, context_image, layout_data, layout_text |
|
else: |
|
return layout_image, None, layout_data, layout_text |
|
|
|
except Exception as e: |
|
error_message = f"Error: {str(e)}" |
|
print(error_message) |
|
return None, None, {"error": error_message}, error_message |
|
|
|
|
|
generate_button.click( |
|
fn=process_ui_request, |
|
inputs=[prompt_input, keywords_input, width_input, height_input, temperature_input, show_image_input], |
|
outputs=[layout_output, context_image_output, layout_elements_output, layout_text_output] |
|
) |
|
|
|
gr.Markdown(""" |
|
## About TextDiffuser-2 |
|
|
|
TextDiffuser-2 is a system that uses language models for text rendering in images. The layout planner component is responsible for determining where text should be positioned in the generated image. |
|
|
|
This demo focuses only on the layout planning aspect, allowing you to generate and export layout information that can be used in your own HTML5 Canvas UI editor. |
|
|
|
For the full TextDiffuser-2 implementation, please visit the [official repository](https://github.com/microsoft/unilm/tree/master/textdiffuser-2). |
|
""") |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |