Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# app.py - TextDiffuser-2 implementation
|
2 |
import os
|
3 |
import torch
|
4 |
import gradio as gr
|
@@ -7,357 +7,535 @@ import json
|
|
7 |
from PIL import Image, ImageDraw, ImageFont
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
from diffusers import StableDiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Check for GPU
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
print(f"Using device: {device}")
|
14 |
|
15 |
-
|
|
|
|
|
|
|
16 |
"""
|
17 |
-
|
18 |
"""
|
19 |
def __init__(self):
|
20 |
-
# Load
|
21 |
-
|
22 |
-
self.tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
23 |
-
self.language_model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
24 |
-
self.language_model.to(device)
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
32 |
)
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
def generate_layout(self, prompt, image_size=(512, 512),
|
38 |
-
"""Generate text layout based on prompt"""
|
39 |
-
width, height = image_size
|
40 |
-
|
41 |
-
# Format the prompt for layout generation
|
42 |
-
layout_prompt = f"""
|
43 |
-
Create a layout for an image with:
|
44 |
-
- Description: {prompt}
|
45 |
-
- Image size: {width}x{height}
|
46 |
-
- Number of text elements: {num_text_elements}
|
47 |
-
|
48 |
-
Generate text content and positions:
|
49 |
"""
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
max_length=input_ids.shape[1] + 150,
|
57 |
-
temperature=0.7,
|
58 |
-
num_return_sequences=1,
|
59 |
-
pad_token_id=self.tokenizer.eos_token_id
|
60 |
-
)
|
61 |
-
|
62 |
-
layout_text = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
63 |
-
|
64 |
-
# Parse the generated layout (simplified)
|
65 |
-
# In a real implementation, this would be more sophisticated
|
66 |
-
text_elements = []
|
67 |
-
|
68 |
-
# Simple fallback: generate random layout
|
69 |
-
import random
|
70 |
-
|
71 |
-
# Create a title element
|
72 |
-
title = prompt.split()[:5]
|
73 |
-
title = " ".join(title) + "..."
|
74 |
-
title_x = width // 4
|
75 |
-
title_y = height // 4
|
76 |
-
text_elements.append({
|
77 |
-
"text": title,
|
78 |
-
"position": (title_x, title_y),
|
79 |
-
"size": 24,
|
80 |
-
"color": (0, 0, 0),
|
81 |
-
"type": "title"
|
82 |
-
})
|
83 |
-
|
84 |
-
# Create additional text elements
|
85 |
-
sample_texts = [
|
86 |
-
"Premium Quality",
|
87 |
-
"Best Value",
|
88 |
-
"Limited Edition",
|
89 |
-
"New Collection",
|
90 |
-
"Special Offer",
|
91 |
-
"Coming Soon",
|
92 |
-
"Best Seller",
|
93 |
-
"Top Choice",
|
94 |
-
"Featured Product",
|
95 |
-
"Exclusive Deal"
|
96 |
-
]
|
97 |
-
|
98 |
-
for i in range(1, num_text_elements):
|
99 |
-
x = random.randint(width // 8, width * 3 // 4)
|
100 |
-
y = random.randint(height // 3, height * 3 // 4)
|
101 |
-
text = sample_texts[i % len(sample_texts)]
|
102 |
-
color = (
|
103 |
-
random.randint(0, 200),
|
104 |
-
random.randint(0, 200),
|
105 |
-
random.randint(0, 200)
|
106 |
-
)
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
"type": f"element_{i}"
|
114 |
-
})
|
115 |
-
|
116 |
-
return text_elements, layout_text
|
117 |
-
|
118 |
-
def generate_image(self, prompt, image_size=(512, 512)):
|
119 |
-
"""Generate base image using diffusion model or placeholder"""
|
120 |
width, height = image_size
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
else:
|
131 |
-
#
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
for x in range(width):
|
137 |
-
r = int(240 - 100 * (y / height))
|
138 |
-
g = int(240 - 50 * (x / width))
|
139 |
-
b = int(240 - 75 * ((x + y) / (width + height)))
|
140 |
-
image.putpixel((x, y), (r, g, b))
|
141 |
|
142 |
-
return
|
143 |
|
144 |
-
def
|
145 |
-
"""
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
-
for
|
|
|
|
|
|
|
|
|
150 |
try:
|
151 |
-
|
|
|
|
|
|
|
152 |
|
153 |
-
#
|
154 |
-
|
155 |
-
|
156 |
-
except IOError:
|
157 |
-
try:
|
158 |
-
font = ImageFont.truetype("Arial.ttf", font_size)
|
159 |
-
except IOError:
|
160 |
-
font = ImageFont.load_default()
|
161 |
|
162 |
-
#
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
184 |
|
185 |
except Exception as e:
|
186 |
-
print(f"Error
|
187 |
continue
|
188 |
|
189 |
-
return
|
190 |
|
191 |
-
def
|
192 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
width, height = image_size
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
draw = ImageDraw.Draw(image)
|
196 |
|
197 |
-
# Draw grid
|
198 |
-
for x in range(0, width,
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
# Draw text elements
|
204 |
-
for element in
|
205 |
-
|
206 |
text = element["text"]
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
circle_radius = 5
|
211 |
-
circle_bbox = [
|
212 |
-
position[0] - circle_radius,
|
213 |
-
position[1] - circle_radius,
|
214 |
-
position[0] + circle_radius,
|
215 |
-
position[1] + circle_radius
|
216 |
-
]
|
217 |
-
draw.ellipse(circle_bbox, fill=(255, 0, 0))
|
218 |
|
219 |
# Draw text label
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
font
|
|
|
|
|
224 |
|
225 |
-
# Draw
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
230 |
|
231 |
return image
|
232 |
|
233 |
-
def
|
234 |
-
"""
|
235 |
-
|
236 |
-
width = max(256, min(1024, width))
|
237 |
-
height = max(256, min(1024, height))
|
238 |
-
num_text_elements = max(1, min(5, num_text_elements))
|
239 |
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
-
#
|
243 |
-
|
|
|
244 |
|
245 |
-
#
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
250 |
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
-
#
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
"prompt": prompt,
|
|
|
257 |
"image_size": image_size,
|
258 |
-
"
|
259 |
-
"text_elements": text_elements,
|
260 |
-
"layout_generation_prompt": layout_text
|
261 |
}
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
return image_with_text, layout_visualization, formatted_layout
|
266 |
|
267 |
# Initialize the model
|
268 |
-
model =
|
269 |
-
|
270 |
-
# Define the Gradio interface
|
271 |
-
def process_request(prompt, width, height, num_text_elements):
|
272 |
-
try:
|
273 |
-
width = int(width)
|
274 |
-
height = int(height)
|
275 |
-
num_text_elements = int(num_text_elements)
|
276 |
-
|
277 |
-
image, layout, layout_info = model.generate_text_image(
|
278 |
-
prompt,
|
279 |
-
width=width,
|
280 |
-
height=height,
|
281 |
-
num_text_elements=num_text_elements
|
282 |
-
)
|
283 |
-
|
284 |
-
return image, layout, layout_info
|
285 |
-
except Exception as e:
|
286 |
-
error_message = f"Error: {str(e)}"
|
287 |
-
print(error_message)
|
288 |
-
return None, None, error_message
|
289 |
|
290 |
-
# Create the Gradio
|
291 |
-
with gr.Blocks(title="TextDiffuser-2
|
292 |
gr.Markdown("""
|
293 |
-
# TextDiffuser-2
|
294 |
|
295 |
-
This
|
296 |
|
297 |
-
Generate
|
|
|
|
|
|
|
|
|
298 |
""")
|
299 |
|
300 |
with gr.Row():
|
301 |
with gr.Column(scale=1):
|
302 |
prompt_input = gr.Textbox(
|
303 |
label="Prompt",
|
304 |
-
value="A
|
305 |
-
lines=3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
)
|
307 |
|
308 |
with gr.Row():
|
309 |
width_input = gr.Number(label="Width", value=512, minimum=256, maximum=1024, step=64)
|
310 |
height_input = gr.Number(label="Height", value=512, minimum=256, maximum=1024, step=64)
|
311 |
|
312 |
-
|
313 |
-
label="
|
314 |
-
minimum=1,
|
315 |
-
maximum=
|
316 |
-
value=
|
317 |
-
step=1
|
|
|
318 |
)
|
319 |
|
320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
with gr.Column(scale=2):
|
323 |
with gr.Tabs():
|
324 |
-
with gr.TabItem("Generated Image"):
|
325 |
-
image_output = gr.Image(label="Image with Text")
|
326 |
-
|
327 |
with gr.TabItem("Layout Visualization"):
|
328 |
-
layout_output = gr.Image(label="Text Layout")
|
|
|
|
|
|
|
329 |
|
330 |
with gr.TabItem("Layout Information"):
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
Try these prompts or create your own:
|
337 |
-
""")
|
338 |
|
339 |
-
|
|
|
340 |
examples=[
|
341 |
-
["A
|
342 |
-
["A
|
343 |
-
["
|
344 |
-
["A
|
|
|
|
|
|
|
345 |
],
|
346 |
-
inputs=[prompt_input, width_input, height_input,
|
347 |
)
|
348 |
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
)
|
354 |
|
355 |
gr.Markdown("""
|
356 |
-
## About
|
|
|
|
|
357 |
|
358 |
-
This
|
359 |
|
360 |
-
|
|
|
361 |
|
362 |
# Launch the app
|
363 |
if __name__ == "__main__":
|
|
|
1 |
+
# app.py - TextDiffuser-2 implementation with focus on layout planning
|
2 |
import os
|
3 |
import torch
|
4 |
import gradio as gr
|
|
|
7 |
from PIL import Image, ImageDraw, ImageFont
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
from diffusers import StableDiffusionPipeline
|
10 |
+
import time
|
11 |
+
import random
|
12 |
+
|
13 |
+
# Try to import fastchat - may need to install with pip if not available
|
14 |
+
try:
|
15 |
+
from fastchat.model import get_conversation_template
|
16 |
+
except ImportError:
|
17 |
+
# Fallback implementation if fastchat is not available
|
18 |
+
print("FastChat not found. Installing...")
|
19 |
+
os.system("pip install fschat")
|
20 |
+
from fastchat.model import get_conversation_template
|
21 |
|
22 |
# Check for GPU
|
23 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
print(f"Using device: {device}")
|
25 |
|
26 |
+
# Define global storage for user interactions
|
27 |
+
global_dict = {}
|
28 |
+
|
29 |
+
class TextDiffuserLayoutPlanner:
|
30 |
"""
|
31 |
+
Implementation focused on the layout planning aspect of TextDiffuser-2
|
32 |
"""
|
33 |
def __init__(self):
|
34 |
+
# Load the layout planner model
|
35 |
+
self.layout_model_path = "JingyeChen22/textdiffuser2_layout_planner"
|
|
|
|
|
|
|
36 |
|
37 |
+
print(f"Loading layout planner model from {self.layout_model_path}...")
|
38 |
+
|
39 |
+
try:
|
40 |
+
# Initialize the tokenizer and model
|
41 |
+
self.layout_tokenizer = AutoTokenizer.from_pretrained(
|
42 |
+
self.layout_model_path,
|
43 |
+
use_fast=False
|
44 |
)
|
45 |
+
|
46 |
+
# Load the model with half precision if GPU is available
|
47 |
+
model_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
48 |
+
self.layout_model = AutoModelForCausalLM.from_pretrained(
|
49 |
+
self.layout_model_path,
|
50 |
+
torch_dtype=model_dtype,
|
51 |
+
low_cpu_mem_usage=True
|
52 |
+
).to(device)
|
53 |
+
|
54 |
+
print("Layout planner model loaded successfully")
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Error loading layout planner: {e}")
|
57 |
+
print("Falling back to simpler implementation...")
|
58 |
+
# Set models to None to indicate fallback mode
|
59 |
+
self.layout_model = None
|
60 |
+
self.layout_tokenizer = None
|
61 |
|
62 |
+
# Initialize a simple diffusion model for context visualization
|
63 |
+
# This is optional and could be removed if you only need layout
|
64 |
+
self.diffusion_model = None
|
65 |
+
if torch.cuda.is_available():
|
66 |
+
try:
|
67 |
+
self.diffusion_model = StableDiffusionPipeline.from_pretrained(
|
68 |
+
"runwayml/stable-diffusion-v1-5",
|
69 |
+
torch_dtype=torch.float16
|
70 |
+
).to(device)
|
71 |
+
print("Diffusion model loaded for context visualization")
|
72 |
+
except Exception as e:
|
73 |
+
print(f"Could not load diffusion model: {e}")
|
74 |
+
print("Will use placeholder images instead")
|
75 |
|
76 |
+
def generate_layout(self, prompt, keywords="", image_size=(512, 512), temperature=0.7):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
"""
|
78 |
+
Generate a text layout based on the prompt using the layout planner model
|
79 |
|
80 |
+
Args:
|
81 |
+
prompt: Description of the image to generate
|
82 |
+
keywords: Optional keywords to include in the layout (format: "word1/word2/...")
|
83 |
+
image_size: Size of the target image (width, height)
|
84 |
+
temperature: Temperature for layout generation (higher = more diverse)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
Returns:
|
87 |
+
layout_elements: List of text elements with positions
|
88 |
+
layout_text: Raw output from the layout planner
|
89 |
+
layout_image: Visualization of the layout
|
90 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
width, height = image_size
|
92 |
|
93 |
+
# Only proceed with the layout planner if available
|
94 |
+
if self.layout_model is not None and self.layout_tokenizer is not None:
|
95 |
+
# Format the prompt for layout generation
|
96 |
+
if len(keywords.strip()) == 0:
|
97 |
+
template = f'Given a prompt that will be used to generate an image, plan the layout of visual text for the image. The size of the image is {width//4}x{height//4}. Therefore, all properties of the positions should not exceed {width//4}, including the coordinates of top, left, right, and bottom. All keywords are included in the caption. You dont need to specify the details of font styles. At each line, the format should be keyword left, top, right, bottom. So let us begin. Prompt: {prompt}'
|
98 |
+
else:
|
99 |
+
keywords_list = keywords.split('/')
|
100 |
+
keywords_list = [k.strip() for k in keywords_list]
|
101 |
+
template = f'Given a prompt that will be used to generate an image, plan the layout of visual text for the image. The size of the image is {width//4}x{height//4}. Therefore, all properties of the positions should not exceed {width//4}, including the coordinates of top, left, right, and bottom. In addition, we also provide all keywords at random order for reference. You dont need to specify the details of font styles. At each line, the format should be keyword left, top, right, bottom. So let us begin. Prompt: {prompt}. Keywords: {str(keywords_list)}'
|
102 |
+
|
103 |
+
# Use FastChat's conversation template
|
104 |
+
conv = get_conversation_template(self.layout_model_path)
|
105 |
+
conv.append_message(conv.roles[0], template)
|
106 |
+
conv.append_message(conv.roles[1], None)
|
107 |
+
prompt_text = conv.get_prompt()
|
108 |
+
|
109 |
+
# Generate the layout
|
110 |
+
time_start = time.time()
|
111 |
+
print(f"Generating layout for prompt: {prompt}")
|
112 |
+
|
113 |
+
# Tokenize and prepare inputs
|
114 |
+
inputs = self.layout_tokenizer([prompt_text], return_token_type_ids=False)
|
115 |
+
inputs = {k: torch.tensor(v).to(device) for k, v in inputs.items()}
|
116 |
+
|
117 |
+
# Generate layout with the model
|
118 |
+
with torch.no_grad():
|
119 |
+
output_ids = self.layout_model.generate(
|
120 |
+
**inputs,
|
121 |
+
do_sample=True,
|
122 |
+
temperature=temperature,
|
123 |
+
repetition_penalty=1.0,
|
124 |
+
max_new_tokens=512,
|
125 |
+
)
|
126 |
+
|
127 |
+
# Process the output
|
128 |
+
if self.layout_model.config.is_encoder_decoder:
|
129 |
+
output_ids = output_ids[0]
|
130 |
+
else:
|
131 |
+
output_ids = output_ids[0][len(inputs["input_ids"][0]):]
|
132 |
+
|
133 |
+
layout_text = self.layout_tokenizer.decode(
|
134 |
+
output_ids, skip_special_tokens=True, spaces_between_special_tokens=False
|
135 |
+
)
|
136 |
+
|
137 |
+
time_end = time.time()
|
138 |
+
print(f"Layout generation took {time_end - time_start:.2f} seconds")
|
139 |
+
print(f"Layout output: {layout_text}")
|
140 |
+
|
141 |
+
# Parse the layout text to extract text elements
|
142 |
+
layout_elements = self.parse_layout_text(layout_text, image_size)
|
143 |
+
|
144 |
+
# Create a visualization of the layout
|
145 |
+
layout_image = self.visualize_layout(layout_elements, image_size)
|
146 |
+
|
147 |
else:
|
148 |
+
# Fallback: Generate a simple layout
|
149 |
+
print("Using fallback layout generation")
|
150 |
+
layout_elements = self.generate_fallback_layout(prompt, keywords, image_size)
|
151 |
+
layout_text = "Fallback layout generation - Layout planner model not available"
|
152 |
+
layout_image = self.visualize_layout(layout_elements, image_size)
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
return layout_elements, layout_text, layout_image
|
155 |
|
156 |
+
def parse_layout_text(self, layout_text, image_size=(512, 512)):
|
157 |
+
"""
|
158 |
+
Parse the layout text from the layout planner to extract text elements
|
159 |
+
|
160 |
+
Args:
|
161 |
+
layout_text: Output text from the layout planner
|
162 |
+
image_size: Size of the target image
|
163 |
+
|
164 |
+
Returns:
|
165 |
+
layout_elements: List of text elements with positions
|
166 |
+
"""
|
167 |
+
layout_elements = []
|
168 |
+
lines = layout_text.strip().split('\n')
|
169 |
|
170 |
+
for line in lines:
|
171 |
+
line = line.strip()
|
172 |
+
if not line or '###' in line or '.com' in line:
|
173 |
+
continue
|
174 |
+
|
175 |
try:
|
176 |
+
# Parse the line to extract text and position
|
177 |
+
parts = line.split()
|
178 |
+
if len(parts) < 5: # Need at least text and 4 coordinates
|
179 |
+
continue
|
180 |
|
181 |
+
# Last 4 parts should be coordinates, everything else is text
|
182 |
+
coords = parts[-1]
|
183 |
+
text = ' '.join(parts[:-1])
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
+
# Parse coordinates (left, top, right, bottom)
|
186 |
+
try:
|
187 |
+
l, t, r, b = map(int, coords.split(','))
|
188 |
+
|
189 |
+
# Scale coordinates to image size (they are given in 1/4 scale)
|
190 |
+
l, t, r, b = l*4, t*4, r*4, b*4
|
191 |
+
|
192 |
+
# Create text element
|
193 |
+
element = {
|
194 |
+
"text": text,
|
195 |
+
"position": (l, t),
|
196 |
+
"size": (r-l, b-t),
|
197 |
+
"box": (l, t, r, b),
|
198 |
+
"style": {
|
199 |
+
"font": "Arial",
|
200 |
+
"size": 24,
|
201 |
+
"color": (0, 0, 0)
|
202 |
+
}
|
203 |
+
}
|
204 |
+
layout_elements.append(element)
|
205 |
+
except ValueError:
|
206 |
+
print(f"Could not parse coordinates in line: {line}")
|
207 |
+
continue
|
208 |
|
209 |
except Exception as e:
|
210 |
+
print(f"Error parsing layout line: {e}")
|
211 |
continue
|
212 |
|
213 |
+
return layout_elements
|
214 |
|
215 |
+
def generate_fallback_layout(self, prompt, keywords="", image_size=(512, 512)):
|
216 |
+
"""
|
217 |
+
Generate a fallback layout when the layout planner is not available
|
218 |
+
|
219 |
+
Args:
|
220 |
+
prompt: Description of the image
|
221 |
+
keywords: Optional keywords to include
|
222 |
+
image_size: Size of the target image
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
layout_elements: List of text elements with positions
|
226 |
+
"""
|
227 |
width, height = image_size
|
228 |
+
layout_elements = []
|
229 |
+
|
230 |
+
# Extract keywords from the prompt or use provided keywords
|
231 |
+
if keywords:
|
232 |
+
keywords_list = keywords.split('/')
|
233 |
+
keywords_list = [k.strip() for k in keywords_list]
|
234 |
+
else:
|
235 |
+
# Extract potential keywords from the prompt
|
236 |
+
words = prompt.split()
|
237 |
+
keywords_list = [word for word in words if len(word) > 3 and word.isalpha()]
|
238 |
+
keywords_list = keywords_list[:3] # Limit to 3 keywords
|
239 |
+
|
240 |
+
# Generate positions for the keywords
|
241 |
+
for i, keyword in enumerate(keywords_list):
|
242 |
+
# Calculate a position based on the index
|
243 |
+
row = i // 2
|
244 |
+
col = i % 2
|
245 |
+
|
246 |
+
l = 50 + col * (width // 2)
|
247 |
+
t = 50 + row * (height // 3)
|
248 |
+
r = l + 200
|
249 |
+
b = t + 50
|
250 |
+
|
251 |
+
element = {
|
252 |
+
"text": keyword,
|
253 |
+
"position": (l, t),
|
254 |
+
"size": (r-l, b-t),
|
255 |
+
"box": (l, t, r, b),
|
256 |
+
"style": {
|
257 |
+
"font": "Arial",
|
258 |
+
"size": 24,
|
259 |
+
"color": (0, 0, 0)
|
260 |
+
}
|
261 |
+
}
|
262 |
+
layout_elements.append(element)
|
263 |
+
|
264 |
+
return layout_elements
|
265 |
+
|
266 |
+
def visualize_layout(self, layout_elements, image_size=(512, 512)):
|
267 |
+
"""
|
268 |
+
Create a visualization of the text layout
|
269 |
+
|
270 |
+
Args:
|
271 |
+
layout_elements: List of text elements with positions
|
272 |
+
image_size: Size of the target image
|
273 |
+
|
274 |
+
Returns:
|
275 |
+
layout_image: Visualization of the layout
|
276 |
+
"""
|
277 |
+
width, height = image_size
|
278 |
+
image = Image.new("RGB", image_size, (240, 240, 240))
|
279 |
draw = ImageDraw.Draw(image)
|
280 |
|
281 |
+
# Draw grid lines
|
282 |
+
for x in range(0, width, 32):
|
283 |
+
alpha = 255 if x % 128 == 0 else 100
|
284 |
+
draw.line([(x, 0), (x, height)], fill=(200, 200, 200, alpha), width=1)
|
285 |
+
|
286 |
+
for y in range(0, height, 32):
|
287 |
+
alpha = 255 if y % 128 == 0 else 100
|
288 |
+
draw.line([(0, y), (width, y)], fill=(200, 200, 200, alpha), width=1)
|
289 |
+
|
290 |
+
# Try to load a font
|
291 |
+
try:
|
292 |
+
font_large = ImageFont.truetype("Arial.ttf", 20)
|
293 |
+
font_small = ImageFont.truetype("Arial.ttf", 12)
|
294 |
+
except IOError:
|
295 |
+
try:
|
296 |
+
font_large = ImageFont.truetype("DejaVuSans.ttf", 20)
|
297 |
+
font_small = ImageFont.truetype("DejaVuSans.ttf", 12)
|
298 |
+
except IOError:
|
299 |
+
font_large = ImageFont.load_default()
|
300 |
+
font_small = ImageFont.load_default()
|
301 |
|
302 |
# Draw text elements
|
303 |
+
for i, element in enumerate(layout_elements):
|
304 |
+
box = element.get("box", (0, 0, 0, 0))
|
305 |
text = element["text"]
|
306 |
+
|
307 |
+
# Draw bounding box
|
308 |
+
draw.rectangle(box, outline=(255, 0, 0), width=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
# Draw text label
|
311 |
+
draw.text(
|
312 |
+
(box[0] + 5, box[1] - 20),
|
313 |
+
f"{i+1}: {text}",
|
314 |
+
font=font_small,
|
315 |
+
fill=(0, 0, 0)
|
316 |
+
)
|
317 |
|
318 |
+
# Draw coordinates
|
319 |
+
coord_text = f"({box[0]},{box[1]}) to ({box[2]},{box[3]})"
|
320 |
+
draw.text(
|
321 |
+
(box[0] + 5, box[3] + 5),
|
322 |
+
coord_text,
|
323 |
+
font=font_small,
|
324 |
+
fill=(0, 0, 255)
|
325 |
+
)
|
326 |
|
327 |
return image
|
328 |
|
329 |
+
def generate_context_image(self, prompt, image_size=(512, 512)):
|
330 |
+
"""
|
331 |
+
Generate a context image based on the prompt
|
|
|
|
|
|
|
332 |
|
333 |
+
Args:
|
334 |
+
prompt: Description of the image
|
335 |
+
image_size: Size of the target image
|
336 |
+
|
337 |
+
Returns:
|
338 |
+
image: Generated or placeholder image
|
339 |
+
"""
|
340 |
+
if self.diffusion_model is not None:
|
341 |
+
# Generate image using the diffusion model
|
342 |
+
try:
|
343 |
+
images = self.diffusion_model(
|
344 |
+
prompt=prompt,
|
345 |
+
height=image_size[1],
|
346 |
+
width=image_size[0],
|
347 |
+
num_inference_steps=20
|
348 |
+
).images
|
349 |
+
return images[0]
|
350 |
+
except Exception as e:
|
351 |
+
print(f"Error generating image: {e}")
|
352 |
+
print("Using placeholder image instead")
|
353 |
|
354 |
+
# Create a placeholder gradient image
|
355 |
+
width, height = image_size
|
356 |
+
image = Image.new("RGB", image_size, (240, 240, 240))
|
357 |
|
358 |
+
# Add a subtle gradient background
|
359 |
+
for y in range(height):
|
360 |
+
for x in range(width):
|
361 |
+
r = int(240 - 30 * (y / height))
|
362 |
+
g = int(240 - 20 * (x / width))
|
363 |
+
b = int(240 - 40 * ((x + y) / (width + height)))
|
364 |
+
image.putpixel((x, y), (r, g, b))
|
365 |
|
366 |
+
return image
|
367 |
+
|
368 |
+
def process_request(self, prompt, keywords="", width=512, height=512, temperature=0.7, generate_image=False):
|
369 |
+
"""
|
370 |
+
Process a user request to generate a layout
|
371 |
|
372 |
+
Args:
|
373 |
+
prompt: Description of the image
|
374 |
+
keywords: Optional keywords to include
|
375 |
+
width: Width of the target image
|
376 |
+
height: Height of the target image
|
377 |
+
temperature: Temperature for layout generation
|
378 |
+
generate_image: Whether to generate a context image
|
379 |
+
|
380 |
+
Returns:
|
381 |
+
layout_elements: List of text elements with positions
|
382 |
+
layout_text: Raw output from the layout planner
|
383 |
+
layout_image: Visualization of the layout
|
384 |
+
context_image: Generated or placeholder image (if requested)
|
385 |
+
"""
|
386 |
+
image_size = (width, height)
|
387 |
|
388 |
+
# Generate layout
|
389 |
+
layout_elements, layout_text, layout_image = self.generate_layout(
|
390 |
+
prompt, keywords, image_size, temperature
|
391 |
+
)
|
392 |
+
|
393 |
+
# Generate context image if requested
|
394 |
+
context_image = None
|
395 |
+
if generate_image:
|
396 |
+
context_image = self.generate_context_image(prompt, image_size)
|
397 |
+
|
398 |
+
# Format the layout data for display
|
399 |
+
layout_data = {
|
400 |
"prompt": prompt,
|
401 |
+
"keywords": keywords,
|
402 |
"image_size": image_size,
|
403 |
+
"text_elements": layout_elements,
|
|
|
|
|
404 |
}
|
405 |
|
406 |
+
return layout_elements, layout_text, layout_image, context_image, layout_data
|
|
|
|
|
407 |
|
408 |
# Initialize the model
|
409 |
+
model = TextDiffuserLayoutPlanner()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
|
411 |
+
# Create the Gradio interface
|
412 |
+
with gr.Blocks(title="TextDiffuser-2 Layout Planner") as demo:
|
413 |
gr.Markdown("""
|
414 |
+
# TextDiffuser-2 Layout Planner
|
415 |
|
416 |
+
This application focuses on the layout planning aspect of TextDiffuser-2. It allows you to:
|
417 |
|
418 |
+
1. Generate text layouts for images based on prompts
|
419 |
+
2. Visualize the layout with text positions and bounding boxes
|
420 |
+
3. Export the layout information for use in your own HTML5 Canvas UI editor
|
421 |
+
|
422 |
+
Based on the paper "[TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering](https://arxiv.org/abs/2311.16465)" by Jingye Chen et al.
|
423 |
""")
|
424 |
|
425 |
with gr.Row():
|
426 |
with gr.Column(scale=1):
|
427 |
prompt_input = gr.Textbox(
|
428 |
label="Prompt",
|
429 |
+
value="A beautiful city skyline stamp of Shanghai",
|
430 |
+
lines=3,
|
431 |
+
placeholder="Describe the image you want to generate with text elements"
|
432 |
+
)
|
433 |
+
|
434 |
+
keywords_input = gr.Textbox(
|
435 |
+
label="Optional Keywords (separated by /)",
|
436 |
+
placeholder="keyword1/keyword2/keyword3",
|
437 |
+
info="If provided, the layout planner will try to use these keywords"
|
438 |
)
|
439 |
|
440 |
with gr.Row():
|
441 |
width_input = gr.Number(label="Width", value=512, minimum=256, maximum=1024, step=64)
|
442 |
height_input = gr.Number(label="Height", value=512, minimum=256, maximum=1024, step=64)
|
443 |
|
444 |
+
temperature_input = gr.Slider(
|
445 |
+
label="Temperature",
|
446 |
+
minimum=0.1,
|
447 |
+
maximum=2.0,
|
448 |
+
value=0.7,
|
449 |
+
step=0.1,
|
450 |
+
info="Controls randomness in layout generation. Higher values produce more diverse layouts."
|
451 |
)
|
452 |
|
453 |
+
show_image_input = gr.Checkbox(
|
454 |
+
label="Generate Context Image",
|
455 |
+
value=False,
|
456 |
+
info="Generate a simple image to provide context (this is just for visualization)"
|
457 |
+
)
|
458 |
+
|
459 |
+
generate_button = gr.Button("Generate Layout", variant="primary")
|
460 |
+
|
461 |
+
gr.Markdown("""
|
462 |
+
## Tips for using this demo
|
463 |
+
|
464 |
+
1. The layout planner works best with descriptive prompts
|
465 |
+
2. You can specify keywords to ensure they appear in the layout
|
466 |
+
3. Increase temperature for more diverse layouts
|
467 |
+
4. The context image is optional and just for visualization
|
468 |
+
""")
|
469 |
|
470 |
with gr.Column(scale=2):
|
471 |
with gr.Tabs():
|
|
|
|
|
|
|
472 |
with gr.TabItem("Layout Visualization"):
|
473 |
+
layout_output = gr.Image(label="Text Layout Visualization", type="pil")
|
474 |
+
|
475 |
+
with gr.TabItem("Context Image"):
|
476 |
+
context_image_output = gr.Image(label="Context Image (Optional)", type="pil")
|
477 |
|
478 |
with gr.TabItem("Layout Information"):
|
479 |
+
layout_elements_output = gr.JSON(label="Layout Elements")
|
480 |
+
|
481 |
+
with gr.TabItem("Raw Layout Output"):
|
482 |
+
layout_text_output = gr.Textbox(label="Raw Layout Planner Output", lines=10)
|
|
|
|
|
|
|
483 |
|
484 |
+
# Examples
|
485 |
+
gr.Examples(
|
486 |
examples=[
|
487 |
+
["A new year greeting card of happy 2024, surrounded by balloons", "", 512, 512, 0.7, True],
|
488 |
+
["A beautiful city skyline stamp of Shanghai", "", 512, 512, 0.7, True],
|
489 |
+
["The words 'KFC VIVO50' are inscribed upon the wall in a neon light effect", "KFC/VIVO50", 512, 512, 0.7, True],
|
490 |
+
["A logo of superman", "", 512, 512, 0.7, True],
|
491 |
+
["A pencil sketch of a tree with the title nothing to tree here", "nothing/tree/here", 512, 512, 0.7, True],
|
492 |
+
["Delicate greeting card of happy birthday to xyz", "happy/birthday/xyz", 768, 512, 1.0, True],
|
493 |
+
["Book cover of good morning baby", "good/morning/baby", 512, 768, 0.7, True],
|
494 |
],
|
495 |
+
inputs=[prompt_input, keywords_input, width_input, height_input, temperature_input, show_image_input]
|
496 |
)
|
497 |
|
498 |
+
# Function to process the request
|
499 |
+
def process_ui_request(prompt, keywords, width, height, temperature, show_image):
|
500 |
+
try:
|
501 |
+
width = int(width)
|
502 |
+
height = int(height)
|
503 |
+
|
504 |
+
layout_elements, layout_text, layout_image, context_image, layout_data = model.process_request(
|
505 |
+
prompt,
|
506 |
+
keywords,
|
507 |
+
width,
|
508 |
+
height,
|
509 |
+
temperature,
|
510 |
+
show_image
|
511 |
+
)
|
512 |
+
|
513 |
+
if show_image and context_image is not None:
|
514 |
+
return layout_image, context_image, layout_data, layout_text
|
515 |
+
else:
|
516 |
+
return layout_image, None, layout_data, layout_text
|
517 |
+
|
518 |
+
except Exception as e:
|
519 |
+
error_message = f"Error: {str(e)}"
|
520 |
+
print(error_message)
|
521 |
+
return None, None, {"error": error_message}, error_message
|
522 |
+
|
523 |
+
# Connect the button to the processing function
|
524 |
+
generate_button.click(
|
525 |
+
fn=process_ui_request,
|
526 |
+
inputs=[prompt_input, keywords_input, width_input, height_input, temperature_input, show_image_input],
|
527 |
+
outputs=[layout_output, context_image_output, layout_elements_output, layout_text_output]
|
528 |
)
|
529 |
|
530 |
gr.Markdown("""
|
531 |
+
## About TextDiffuser-2
|
532 |
+
|
533 |
+
TextDiffuser-2 is a system that uses language models for text rendering in images. The layout planner component is responsible for determining where text should be positioned in the generated image.
|
534 |
|
535 |
+
This demo focuses only on the layout planning aspect, allowing you to generate and export layout information that can be used in your own HTML5 Canvas UI editor.
|
536 |
|
537 |
+
For the full TextDiffuser-2 implementation, please visit the [official repository](https://github.com/microsoft/unilm/tree/master/textdiffuser-2).
|
538 |
+
""")
|
539 |
|
540 |
# Launch the app
|
541 |
if __name__ == "__main__":
|