Spaces:
Sleeping
Sleeping
File size: 8,841 Bytes
fbfcb17 aab9adc fbfcb17 78c2297 fbfcb17 de37d9a fbfcb17 de37d9a fbfcb17 de37d9a fbfcb17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import os
import tempfile
import json
import numpy as np
import cv2
from PIL import Image
from pdf2image import convert_from_bytes
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
import uvicorn
from fastapi import APIRouter, HTTPException, Path
# Get API key from environment
GENAI_API_KEY = os.getenv("GENAI_API_KEY")
if not GENAI_API_KEY:
raise Exception("GENAI_API_KEY not set in environment")
# Import the Google GenAI client libraries.
from google import genai
from google.genai import types
# Initialize the GenAI client with the API key.
client = genai.Client(api_key=GENAI_API_KEY)
router = APIRouter(prefix="/check", tags=["check"])
# Use system temporary directory to store the results file.
TEMP_FOLDER = tempfile.gettempdir()
RESULT_FILE = os.path.join(TEMP_FOLDER, "result_cards.json")
##############################################################
# Preprocessing & Extraction Functions
##############################################################
def extract_json_from_output(output_str: str):
"""
Extracts a JSON object from a string containing extra text.
"""
start = output_str.find('{')
end = output_str.rfind('}')
if start == -1 or end == -1:
print("No JSON block found in the output.")
return None
json_str = output_str[start:end+1]
try:
return json.loads(json_str)
except json.JSONDecodeError as e:
print("Error decoding JSON:", e)
return None
def parse_all_answers(image_input: Image.Image) -> str:
"""
Extracts answers from an image of a 15-question answer sheet.
Returns the raw JSON string response from the model.
"""
output_format = """
Answer in the following JSON format. Do not write anything else:
{
"Answers": {
"1": "<option or text>",
"2": "<option or text>",
"3": "<option or text>",
"4": "<option or text>",
"5": "<option or text>",
"6": "<option or text>",
"7": "<option or text>",
"8": "<option or text>",
"9": "<option or text>",
"10": "<option or text>",
"11": "<free-text answer>",
"12": "<free-text answer>",
"13": "<free-text answer>",
"14": "<free-text answer>",
"15": "<free-text answer>"
}
}
"""
prompt = f"""
You are an assistant that extracts answers from an image.
The image is a screenshot of an answer sheet containing 15 questions.
For questions 1 to 10, the answers are multiple-choice selections.
For questions 11 to 15, the answers are free-text responses.
Extract the answer for each question (1 to 15) and provide the result in JSON using the format below:
{output_format}
"""
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=[prompt, image_input]
)
return response.text
def parse_info(image_input: Image.Image) -> str:
"""
Extracts candidate information including name, number, country, level and paper from an image.
Returns the raw JSON string response from the model.
"""
output_format = """
Answer in the following JSON format. Do not write anything else:
{
"Candidate Info": {
"Name": "<name>",
"Number": "<number>",
"Country": "<country>",
"Level": "<level>",
"Paper": "<paper>"
}
}
"""
prompt = f"""
You are an assistant that extracts candidate information from an image.
The image contains candidate details including name, candidate number, country, level and paper.
Extract the information accurately and provide the result in JSON using the following format:
{output_format}
"""
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=[prompt, image_input]
)
return response.text
def calculate_result(student_answers: dict, correct_answers: dict) -> dict:
"""
Compares student's answers with the correct answers and calculates the score.
Assumes JSON structures with a top-level "Answers" key containing Q1 to Q15.
"""
student_all = student_answers.get("Answers", {})
correct_all = correct_answers.get("Answers", {})
total_questions = 15
marks = 0
detailed = {}
for q in map(str, range(1, total_questions + 1)):
stud_ans = student_all.get(q, "").strip()
corr_ans = correct_all.get(q, "").strip()
if stud_ans == corr_ans:
marks += 1
detailed[q] = {"Student": stud_ans, "Correct": corr_ans, "Result": "Correct"}
else:
detailed[q] = {"Student": stud_ans, "Correct": corr_ans, "Result": "Incorrect"}
percentage = (marks / total_questions) * 100
return {
"Total Marks": marks,
"Total Questions": total_questions,
"Percentage": percentage,
"Detailed Results": detailed
}
def load_answer_key(pdf_bytes: bytes) -> dict:
"""
Converts a PDF (as bytes) to images, takes the last page, and parses the answers.
Returns the parsed JSON answer key.
"""
images = convert_from_bytes(pdf_bytes)
last_page_image = images[-1]
answer_key_response = parse_all_answers(last_page_image)
return extract_json_from_output(answer_key_response)
##############################################################
# FastAPI Endpoints
##############################################################
@router.post("/process")
async def process_pdfs(
original_pdf: UploadFile = File(..., description="PDF with all student answer sheets (one page per student)"),
paper_k_pdf: UploadFile = File(..., description="Answer key PDF for Paper K")
):
try:
# Read file bytes
student_pdf_bytes = await original_pdf.read()
paper_k_bytes = await paper_k_pdf.read()
# Load the Paper K answer key
answer_key_k = load_answer_key(paper_k_bytes)
if answer_key_k is None:
raise Exception("Failed to parse Paper K answer key.")
# Convert the student answer PDF to images (each page = one student)
student_images = convert_from_bytes(student_pdf_bytes)
all_results = []
for idx, page in enumerate(student_images):
# --- Extract Candidate Info Region ---
page_cv = cv2.cvtColor(np.array(page), cv2.COLOR_RGB2BGR)
h, w = page_cv.shape[:2]
mask = np.zeros((h, w), dtype="uint8")
top, bottom = int(h * 0.10), int(h * 0.75)
cv2.rectangle(mask, (0, top), (w, h - bottom), 255, -1)
cropped = cv2.bitwise_and(page_cv, page_cv, mask=mask)
coords = cv2.findNonZero(mask)
if coords is None:
continue
x, y, mw, mh = cv2.boundingRect(coords)
cand_img = Image.fromarray(cv2.cvtColor(cropped[y:y+mh, x:x+mw], cv2.COLOR_BGR2RGB))
# Extract candidate info
info_resp = parse_info(cand_img)
cand_info = extract_json_from_output(info_resp) or {}
# Extract student answers
stud_resp = parse_all_answers(page)
stud_answers = extract_json_from_output(stud_resp) or {}
# Calculate result against Paper K key
result = calculate_result(stud_answers, answer_key_k)
all_results.append({
"Student Index": idx + 1,
"Candidate Info": cand_info.get("Candidate Info", {}),
"Student Answers": stud_answers,
"Correct Answer Key": answer_key_k,
"Result": result
})
# Write out JSON file
with open(RESULT_FILE, "w", encoding="utf-8") as f:
json.dump({"results": all_results}, f, indent=2)
return JSONResponse(content={"results": all_results})
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@router.get("/download")
async def download_results():
"""
Returns the result JSON file stored in the temporary folder.
"""
if not os.path.exists(RESULT_FILE):
raise HTTPException(status_code=404, detail="Result file not found. Please run /process first.")
return StreamingResponse(
open(RESULT_FILE, "rb"),
media_type="application/json",
headers={"Content-Disposition": "attachment; filename=result_cards.json"}
)
@router.get("/")
async def root():
return {
"message": "Welcome to the Student Result Card API (Paper K only).",
"usage": (
"POST two PDFs to /process: "
"(1) original answer sheet PDF, "
"(2) Paper K answer-key PDF. "
"Then GET /download to retrieve the graded results."
)
}
if __name__ == "__main__":
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)
|