File size: 8,841 Bytes
fbfcb17
 
 
 
 
 
 
 
 
 
aab9adc
 
fbfcb17
 
 
 
 
 
 
 
 
 
 
 
 
78c2297
fbfcb17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de37d9a
fbfcb17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de37d9a
fbfcb17
 
 
 
 
 
 
 
 
 
 
 
 
de37d9a
fbfcb17
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import tempfile
import json
import numpy as np
import cv2
from PIL import Image
from pdf2image import convert_from_bytes
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
import uvicorn
from fastapi import APIRouter, HTTPException, Path


# Get API key from environment
GENAI_API_KEY = os.getenv("GENAI_API_KEY")
if not GENAI_API_KEY:
    raise Exception("GENAI_API_KEY not set in environment")

# Import the Google GenAI client libraries.
from google import genai
from google.genai import types

# Initialize the GenAI client with the API key.
client = genai.Client(api_key=GENAI_API_KEY)

router = APIRouter(prefix="/check", tags=["check"])

# Use system temporary directory to store the results file.
TEMP_FOLDER = tempfile.gettempdir()
RESULT_FILE = os.path.join(TEMP_FOLDER, "result_cards.json")


##############################################################
# Preprocessing & Extraction Functions
##############################################################

def extract_json_from_output(output_str: str):
    """
    Extracts a JSON object from a string containing extra text.
    """
    start = output_str.find('{')
    end = output_str.rfind('}')
    if start == -1 or end == -1:
        print("No JSON block found in the output.")
        return None
    json_str = output_str[start:end+1]
    try:
        return json.loads(json_str)
    except json.JSONDecodeError as e:
        print("Error decoding JSON:", e)
        return None


def parse_all_answers(image_input: Image.Image) -> str:
    """
    Extracts answers from an image of a 15-question answer sheet.
    Returns the raw JSON string response from the model.
    """
    output_format = """
Answer in the following JSON format. Do not write anything else:
{
  "Answers": {
    "1": "<option or text>",
    "2": "<option or text>",
    "3": "<option or text>",
    "4": "<option or text>",
    "5": "<option or text>",
    "6": "<option or text>",
    "7": "<option or text>",
    "8": "<option or text>",
    "9": "<option or text>",
    "10": "<option or text>",
    "11": "<free-text answer>",
    "12": "<free-text answer>",
    "13": "<free-text answer>",
    "14": "<free-text answer>",
    "15": "<free-text answer>"
  }
}
"""
    prompt = f"""
You are an assistant that extracts answers from an image.
The image is a screenshot of an answer sheet containing 15 questions.
For questions 1 to 10, the answers are multiple-choice selections.
For questions 11 to 15, the answers are free-text responses.
Extract the answer for each question (1 to 15) and provide the result in JSON using the format below:
{output_format}
"""
    response = client.models.generate_content(
        model="gemini-2.0-flash",
        contents=[prompt, image_input]
    )
    return response.text


def parse_info(image_input: Image.Image) -> str:
    """
    Extracts candidate information including name, number, country, level and paper from an image.
    Returns the raw JSON string response from the model.
    """
    output_format = """
Answer in the following JSON format. Do not write anything else:
{
  "Candidate Info": {
    "Name": "<name>",
    "Number": "<number>",
    "Country": "<country>",
    "Level": "<level>",
    "Paper": "<paper>"
  }
}
"""
    prompt = f"""
You are an assistant that extracts candidate information from an image.
The image contains candidate details including name, candidate number, country, level and paper.
Extract the information accurately and provide the result in JSON using the following format:
{output_format}
"""
    response = client.models.generate_content(
        model="gemini-2.0-flash",
        contents=[prompt, image_input]
    )
    return response.text


def calculate_result(student_answers: dict, correct_answers: dict) -> dict:
    """
    Compares student's answers with the correct answers and calculates the score.
    Assumes JSON structures with a top-level "Answers" key containing Q1 to Q15.
    """
    student_all = student_answers.get("Answers", {})
    correct_all = correct_answers.get("Answers", {})
    total_questions = 15
    marks = 0
    detailed = {}
    
    for q in map(str, range(1, total_questions + 1)):
        stud_ans = student_all.get(q, "").strip()
        corr_ans = correct_all.get(q, "").strip()
        if stud_ans == corr_ans:
            marks += 1
            detailed[q] = {"Student": stud_ans, "Correct": corr_ans, "Result": "Correct"}
        else:
            detailed[q] = {"Student": stud_ans, "Correct": corr_ans, "Result": "Incorrect"}
    
    percentage = (marks / total_questions) * 100
    return {
        "Total Marks": marks,
        "Total Questions": total_questions,
        "Percentage": percentage,
        "Detailed Results": detailed
    }


def load_answer_key(pdf_bytes: bytes) -> dict:
    """
    Converts a PDF (as bytes) to images, takes the last page, and parses the answers.
    Returns the parsed JSON answer key.
    """
    images = convert_from_bytes(pdf_bytes)
    last_page_image = images[-1]
    answer_key_response = parse_all_answers(last_page_image)
    return extract_json_from_output(answer_key_response)


##############################################################
# FastAPI Endpoints
##############################################################

@router.post("/process")
async def process_pdfs(
    original_pdf: UploadFile = File(..., description="PDF with all student answer sheets (one page per student)"),
    paper_k_pdf:  UploadFile = File(..., description="Answer key PDF for Paper K")
):
    try:
        # Read file bytes
        student_pdf_bytes = await original_pdf.read()
        paper_k_bytes      = await paper_k_pdf.read()
        
        # Load the Paper K answer key
        answer_key_k = load_answer_key(paper_k_bytes)
        if answer_key_k is None:
            raise Exception("Failed to parse Paper K answer key.")
        
        # Convert the student answer PDF to images (each page = one student)
        student_images = convert_from_bytes(student_pdf_bytes)
        all_results = []
        
        for idx, page in enumerate(student_images):
            # --- Extract Candidate Info Region ---
            page_cv = cv2.cvtColor(np.array(page), cv2.COLOR_RGB2BGR)
            h, w = page_cv.shape[:2]
            mask = np.zeros((h, w), dtype="uint8")
            top, bottom = int(h * 0.10), int(h * 0.75)
            cv2.rectangle(mask, (0, top), (w, h - bottom), 255, -1)
            cropped = cv2.bitwise_and(page_cv, page_cv, mask=mask)
            coords = cv2.findNonZero(mask)
            if coords is None:
                continue
            x, y, mw, mh = cv2.boundingRect(coords)
            cand_img = Image.fromarray(cv2.cvtColor(cropped[y:y+mh, x:x+mw], cv2.COLOR_BGR2RGB))
            
            # Extract candidate info
            info_resp = parse_info(cand_img)
            cand_info = extract_json_from_output(info_resp) or {}
            
            # Extract student answers
            stud_resp = parse_all_answers(page)
            stud_answers = extract_json_from_output(stud_resp) or {}
            
            # Calculate result against Paper K key
            result = calculate_result(stud_answers, answer_key_k)
            
            all_results.append({
                "Student Index": idx + 1,
                "Candidate Info": cand_info.get("Candidate Info", {}),
                "Student Answers": stud_answers,
                "Correct Answer Key": answer_key_k,
                "Result": result
            })
        
        # Write out JSON file
        with open(RESULT_FILE, "w", encoding="utf-8") as f:
            json.dump({"results": all_results}, f, indent=2)
        
        return JSONResponse(content={"results": all_results})
    
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@router.get("/download")
async def download_results():
    """
    Returns the result JSON file stored in the temporary folder.
    """
    if not os.path.exists(RESULT_FILE):
        raise HTTPException(status_code=404, detail="Result file not found. Please run /process first.")
    return StreamingResponse(
        open(RESULT_FILE, "rb"),
        media_type="application/json",
        headers={"Content-Disposition": "attachment; filename=result_cards.json"}
    )


@router.get("/")
async def root():
    return {
        "message": "Welcome to the Student Result Card API (Paper K only).",
        "usage": (
            "POST two PDFs to /process: "
            "(1) original answer sheet PDF, "
            "(2) Paper K answer-key PDF. "
            "Then GET /download to retrieve the graded results."
        )
    }


if __name__ == "__main__":
    uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)