Spaces:
Running
Running
Create check.py
Browse files
check.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import json
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
from PIL import Image
|
7 |
+
from pdf2image import convert_from_bytes
|
8 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
9 |
+
from fastapi.responses import JSONResponse, StreamingResponse
|
10 |
+
import uvicorn
|
11 |
+
|
12 |
+
# Get API key from environment
|
13 |
+
GENAI_API_KEY = os.getenv("GENAI_API_KEY")
|
14 |
+
if not GENAI_API_KEY:
|
15 |
+
raise Exception("GENAI_API_KEY not set in environment")
|
16 |
+
|
17 |
+
# Import the Google GenAI client libraries.
|
18 |
+
from google import genai
|
19 |
+
from google.genai import types
|
20 |
+
|
21 |
+
# Initialize the GenAI client with the API key.
|
22 |
+
client = genai.Client(api_key=GENAI_API_KEY)
|
23 |
+
|
24 |
+
app = FastAPI(title="Student Result Card API (Paper K only)")
|
25 |
+
|
26 |
+
# Use system temporary directory to store the results file.
|
27 |
+
TEMP_FOLDER = tempfile.gettempdir()
|
28 |
+
RESULT_FILE = os.path.join(TEMP_FOLDER, "result_cards.json")
|
29 |
+
|
30 |
+
|
31 |
+
##############################################################
|
32 |
+
# Preprocessing & Extraction Functions
|
33 |
+
##############################################################
|
34 |
+
|
35 |
+
def extract_json_from_output(output_str: str):
|
36 |
+
"""
|
37 |
+
Extracts a JSON object from a string containing extra text.
|
38 |
+
"""
|
39 |
+
start = output_str.find('{')
|
40 |
+
end = output_str.rfind('}')
|
41 |
+
if start == -1 or end == -1:
|
42 |
+
print("No JSON block found in the output.")
|
43 |
+
return None
|
44 |
+
json_str = output_str[start:end+1]
|
45 |
+
try:
|
46 |
+
return json.loads(json_str)
|
47 |
+
except json.JSONDecodeError as e:
|
48 |
+
print("Error decoding JSON:", e)
|
49 |
+
return None
|
50 |
+
|
51 |
+
|
52 |
+
def parse_all_answers(image_input: Image.Image) -> str:
|
53 |
+
"""
|
54 |
+
Extracts answers from an image of a 15-question answer sheet.
|
55 |
+
Returns the raw JSON string response from the model.
|
56 |
+
"""
|
57 |
+
output_format = """
|
58 |
+
Answer in the following JSON format. Do not write anything else:
|
59 |
+
{
|
60 |
+
"Answers": {
|
61 |
+
"1": "<option or text>",
|
62 |
+
"2": "<option or text>",
|
63 |
+
"3": "<option or text>",
|
64 |
+
"4": "<option or text>",
|
65 |
+
"5": "<option or text>",
|
66 |
+
"6": "<option or text>",
|
67 |
+
"7": "<option or text>",
|
68 |
+
"8": "<option or text>",
|
69 |
+
"9": "<option or text>",
|
70 |
+
"10": "<option or text>",
|
71 |
+
"11": "<free-text answer>",
|
72 |
+
"12": "<free-text answer>",
|
73 |
+
"13": "<free-text answer>",
|
74 |
+
"14": "<free-text answer>",
|
75 |
+
"15": "<free-text answer>"
|
76 |
+
}
|
77 |
+
}
|
78 |
+
"""
|
79 |
+
prompt = f"""
|
80 |
+
You are an assistant that extracts answers from an image.
|
81 |
+
The image is a screenshot of an answer sheet containing 15 questions.
|
82 |
+
For questions 1 to 10, the answers are multiple-choice selections.
|
83 |
+
For questions 11 to 15, the answers are free-text responses.
|
84 |
+
Extract the answer for each question (1 to 15) and provide the result in JSON using the format below:
|
85 |
+
{output_format}
|
86 |
+
"""
|
87 |
+
response = client.models.generate_content(
|
88 |
+
model="gemini-2.0-flash",
|
89 |
+
contents=[prompt, image_input]
|
90 |
+
)
|
91 |
+
return response.text
|
92 |
+
|
93 |
+
|
94 |
+
def parse_info(image_input: Image.Image) -> str:
|
95 |
+
"""
|
96 |
+
Extracts candidate information including name, number, country, level and paper from an image.
|
97 |
+
Returns the raw JSON string response from the model.
|
98 |
+
"""
|
99 |
+
output_format = """
|
100 |
+
Answer in the following JSON format. Do not write anything else:
|
101 |
+
{
|
102 |
+
"Candidate Info": {
|
103 |
+
"Name": "<name>",
|
104 |
+
"Number": "<number>",
|
105 |
+
"Country": "<country>",
|
106 |
+
"Level": "<level>",
|
107 |
+
"Paper": "<paper>"
|
108 |
+
}
|
109 |
+
}
|
110 |
+
"""
|
111 |
+
prompt = f"""
|
112 |
+
You are an assistant that extracts candidate information from an image.
|
113 |
+
The image contains candidate details including name, candidate number, country, level and paper.
|
114 |
+
Extract the information accurately and provide the result in JSON using the following format:
|
115 |
+
{output_format}
|
116 |
+
"""
|
117 |
+
response = client.models.generate_content(
|
118 |
+
model="gemini-2.0-flash",
|
119 |
+
contents=[prompt, image_input]
|
120 |
+
)
|
121 |
+
return response.text
|
122 |
+
|
123 |
+
|
124 |
+
def calculate_result(student_answers: dict, correct_answers: dict) -> dict:
|
125 |
+
"""
|
126 |
+
Compares student's answers with the correct answers and calculates the score.
|
127 |
+
Assumes JSON structures with a top-level "Answers" key containing Q1 to Q15.
|
128 |
+
"""
|
129 |
+
student_all = student_answers.get("Answers", {})
|
130 |
+
correct_all = correct_answers.get("Answers", {})
|
131 |
+
total_questions = 15
|
132 |
+
marks = 0
|
133 |
+
detailed = {}
|
134 |
+
|
135 |
+
for q in map(str, range(1, total_questions + 1)):
|
136 |
+
stud_ans = student_all.get(q, "").strip()
|
137 |
+
corr_ans = correct_all.get(q, "").strip()
|
138 |
+
if stud_ans == corr_ans:
|
139 |
+
marks += 1
|
140 |
+
detailed[q] = {"Student": stud_ans, "Correct": corr_ans, "Result": "Correct"}
|
141 |
+
else:
|
142 |
+
detailed[q] = {"Student": stud_ans, "Correct": corr_ans, "Result": "Incorrect"}
|
143 |
+
|
144 |
+
percentage = (marks / total_questions) * 100
|
145 |
+
return {
|
146 |
+
"Total Marks": marks,
|
147 |
+
"Total Questions": total_questions,
|
148 |
+
"Percentage": percentage,
|
149 |
+
"Detailed Results": detailed
|
150 |
+
}
|
151 |
+
|
152 |
+
|
153 |
+
def load_answer_key(pdf_bytes: bytes) -> dict:
|
154 |
+
"""
|
155 |
+
Converts a PDF (as bytes) to images, takes the last page, and parses the answers.
|
156 |
+
Returns the parsed JSON answer key.
|
157 |
+
"""
|
158 |
+
images = convert_from_bytes(pdf_bytes)
|
159 |
+
last_page_image = images[-1]
|
160 |
+
answer_key_response = parse_all_answers(last_page_image)
|
161 |
+
return extract_json_from_output(answer_key_response)
|
162 |
+
|
163 |
+
|
164 |
+
##############################################################
|
165 |
+
# FastAPI Endpoints
|
166 |
+
##############################################################
|
167 |
+
|
168 |
+
@app.post("/process")
|
169 |
+
async def process_pdfs(
|
170 |
+
original_pdf: UploadFile = File(..., description="PDF with all student answer sheets (one page per student)"),
|
171 |
+
paper_k_pdf: UploadFile = File(..., description="Answer key PDF for Paper K")
|
172 |
+
):
|
173 |
+
try:
|
174 |
+
# Read file bytes
|
175 |
+
student_pdf_bytes = await original_pdf.read()
|
176 |
+
paper_k_bytes = await paper_k_pdf.read()
|
177 |
+
|
178 |
+
# Load the Paper K answer key
|
179 |
+
answer_key_k = load_answer_key(paper_k_bytes)
|
180 |
+
if answer_key_k is None:
|
181 |
+
raise Exception("Failed to parse Paper K answer key.")
|
182 |
+
|
183 |
+
# Convert the student answer PDF to images (each page = one student)
|
184 |
+
student_images = convert_from_bytes(student_pdf_bytes)
|
185 |
+
all_results = []
|
186 |
+
|
187 |
+
for idx, page in enumerate(student_images):
|
188 |
+
# --- Extract Candidate Info Region ---
|
189 |
+
page_cv = cv2.cvtColor(np.array(page), cv2.COLOR_RGB2BGR)
|
190 |
+
h, w = page_cv.shape[:2]
|
191 |
+
mask = np.zeros((h, w), dtype="uint8")
|
192 |
+
top, bottom = int(h * 0.10), int(h * 0.75)
|
193 |
+
cv2.rectangle(mask, (0, top), (w, h - bottom), 255, -1)
|
194 |
+
cropped = cv2.bitwise_and(page_cv, page_cv, mask=mask)
|
195 |
+
coords = cv2.findNonZero(mask)
|
196 |
+
if coords is None:
|
197 |
+
continue
|
198 |
+
x, y, mw, mh = cv2.boundingRect(coords)
|
199 |
+
cand_img = Image.fromarray(cv2.cvtColor(cropped[y:y+mh, x:x+mw], cv2.COLOR_BGR2RGB))
|
200 |
+
|
201 |
+
# Extract candidate info
|
202 |
+
info_resp = parse_info(cand_img)
|
203 |
+
cand_info = extract_json_from_output(info_resp) or {}
|
204 |
+
|
205 |
+
# Extract student answers
|
206 |
+
stud_resp = parse_all_answers(page)
|
207 |
+
stud_answers = extract_json_from_output(stud_resp) or {}
|
208 |
+
|
209 |
+
# Calculate result against Paper K key
|
210 |
+
result = calculate_result(stud_answers, answer_key_k)
|
211 |
+
|
212 |
+
all_results.append({
|
213 |
+
"Student Index": idx + 1,
|
214 |
+
"Candidate Info": cand_info.get("Candidate Info", {}),
|
215 |
+
"Student Answers": stud_answers,
|
216 |
+
"Correct Answer Key": answer_key_k,
|
217 |
+
"Result": result
|
218 |
+
})
|
219 |
+
|
220 |
+
# Write out JSON file
|
221 |
+
with open(RESULT_FILE, "w", encoding="utf-8") as f:
|
222 |
+
json.dump({"results": all_results}, f, indent=2)
|
223 |
+
|
224 |
+
return JSONResponse(content={"results": all_results})
|
225 |
+
|
226 |
+
except Exception as e:
|
227 |
+
raise HTTPException(status_code=500, detail=str(e))
|
228 |
+
|
229 |
+
|
230 |
+
@app.get("/download")
|
231 |
+
async def download_results():
|
232 |
+
"""
|
233 |
+
Returns the result JSON file stored in the temporary folder.
|
234 |
+
"""
|
235 |
+
if not os.path.exists(RESULT_FILE):
|
236 |
+
raise HTTPException(status_code=404, detail="Result file not found. Please run /process first.")
|
237 |
+
return StreamingResponse(
|
238 |
+
open(RESULT_FILE, "rb"),
|
239 |
+
media_type="application/json",
|
240 |
+
headers={"Content-Disposition": "attachment; filename=result_cards.json"}
|
241 |
+
)
|
242 |
+
|
243 |
+
|
244 |
+
@app.get("/")
|
245 |
+
async def root():
|
246 |
+
return {
|
247 |
+
"message": "Welcome to the Student Result Card API (Paper K only).",
|
248 |
+
"usage": (
|
249 |
+
"POST two PDFs to /process: "
|
250 |
+
"(1) original answer sheet PDF, "
|
251 |
+
"(2) Paper K answer-key PDF. "
|
252 |
+
"Then GET /download to retrieve the graded results."
|
253 |
+
)
|
254 |
+
}
|
255 |
+
|
256 |
+
|
257 |
+
if __name__ == "__main__":
|
258 |
+
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)
|