Chatbot-backend / main.py
mominah's picture
Upload 11 files
7b7cab6 verified
raw
history blame
13.4 kB
import os
import tempfile
import zipfile
from typing import List, Optional
from fastapi import FastAPI, File, UploadFile, HTTPException, Query
from fastapi.responses import FileResponse, StreamingResponse
from llm_initialization import get_llm
from embedding import get_embeddings
from document_loaders import DocumentLoader
from text_splitter import TextSplitter
from vector_store import VectorStoreManager
from prompt_templates import PromptTemplates
from chat_management import ChatManagement
from retrieval_chain import RetrievalChain
from urllib.parse import quote_plus
from dotenv import load_dotenv
from pymongo import MongoClient
# Load environment variables
load_dotenv()
MONGO_PASSWORD = quote_plus(os.getenv("MONGO_PASSWORD"))
MONGO_DATABASE_NAME = os.getenv("DATABASE_NAME")
MONGO_COLLECTION_NAME = os.getenv("COLLECTION_NAME")
MONGO_CLUSTER_URL = os.getenv("CONNECTION_STRING")
app = FastAPI(title="VectorStore & Document Management API")
# Global variables (initialized on startup)
llm = None
embeddings = None
chat_manager = None
document_loader = None
text_splitter = None
vector_store_manager = None
vector_store = None
k = 3 # Number of documents to retrieve per query
# Global MongoDB collection to store retrieval chain configuration per chat session.
chat_chains_collection = None
# ----------------------- Startup Event -----------------------
@app.on_event("startup")
async def startup_event():
global llm, embeddings, chat_manager, document_loader, text_splitter, vector_store_manager, vector_store, chat_chains_collection
print("Starting up: Initializing components...")
# Initialize LLM and embeddings
llm = get_llm()
print("LLM initialized.")
embeddings = get_embeddings()
print("Embeddings initialized.")
# Setup chat management
chat_manager = ChatManagement(
cluster_url=MONGO_CLUSTER_URL,
database_name=MONGO_DATABASE_NAME,
collection_name=MONGO_COLLECTION_NAME,
)
print("Chat management initialized.")
# Initialize document loader and text splitter
document_loader = DocumentLoader()
text_splitter = TextSplitter()
print("Document loader and text splitter initialized.")
# Initialize vector store manager and ensure vectorstore is set
vector_store_manager = VectorStoreManager(embeddings)
vector_store = vector_store_manager.vectorstore # Now properly initialized
print("Vector store initialized.")
# Connect to MongoDB and get the collection.
client = MongoClient(MONGO_CLUSTER_URL)
db = client[MONGO_DATABASE_NAME]
chat_chains_collection = db["chat_chains"]
print("Chat chains collection initialized in MongoDB.")
# ----------------------- Root Endpoint -----------------------
@app.get("/")
def root():
"""
Root endpoint that returns a welcome message.
"""
return {"message": "Welcome to the VectorStore & Document Management API!"}
# ----------------------- New Chat Endpoint -----------------------
@app.post("/new_chat")
def new_chat():
"""
Create a new chat session.
"""
new_chat_id = chat_manager.create_new_chat()
return {"chat_id": new_chat_id}
# ----------------------- Create Chain Endpoint -----------------------
@app.post("/create_chain")
def create_chain(
chat_id: str = Query(..., description="Existing chat session ID"),
template: str = Query(
"quiz_solving",
description="Select prompt template. Options: quiz_solving, assignment_solving, paper_solving, quiz_creation, assignment_creation, paper_creation",
),
):
global chat_chains_collection # Ensure we reference the global variable
valid_templates = [
"quiz_solving",
"assignment_solving",
"paper_solving",
"quiz_creation",
"assignment_creation",
"paper_creation",
]
if template not in valid_templates:
raise HTTPException(status_code=400, detail="Invalid template selection.")
# Upsert the configuration document for this chat session.
chat_chains_collection.update_one(
{"chat_id": chat_id}, {"$set": {"template": template}}, upsert=True
)
return {"message": "Retrieval chain configuration stored successfully.", "chat_id": chat_id, "template": template}
# ----------------------- Chat Endpoint -----------------------
@app.get("/chat")
def chat(query: str, chat_id: str = Query(..., description="Chat session ID created via /new_chat and configured via /create_chain")):
"""
Process a chat query using the retrieval chain associated with the given chat_id.
This endpoint uses the following code:
try:
stream_generator = retrieval_chain.stream_chat_response(
query=query,
chat_id=chat_id,
get_chat_history=chat_manager.get_chat_history,
initialize_chat_history=chat_manager.initialize_chat_history,
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing chat query: {str(e)}")
return StreamingResponse(stream_generator, media_type="text/event-stream")
It first retrieves the configuration from MongoDB, re-creates the chain, and then streams the response.
"""
# Retrieve the chat configuration from MongoDB.
config = chat_chains_collection.find_one({"chat_id": chat_id})
if not config:
raise HTTPException(status_code=400, detail="Chat configuration not found. Please create a chain using /create_chain.")
template = config.get("template", "quiz_solving")
if template == "quiz_solving":
prompt = PromptTemplates.get_quiz_solving_prompt()
elif template == "assignment_solving":
prompt = PromptTemplates.get_assignment_solving_prompt()
elif template == "paper_solving":
prompt = PromptTemplates.get_paper_solving_prompt()
elif template == "quiz_creation":
prompt = PromptTemplates.get_quiz_creation_prompt()
elif template == "assignment_creation":
prompt = PromptTemplates.get_assignment_creation_prompt()
elif template == "paper_creation":
prompt = PromptTemplates.get_paper_creation_prompt()
else:
raise HTTPException(status_code=400, detail="Invalid chat configuration.")
# Re-create the retrieval chain for this chat session.
retrieval_chain = RetrievalChain(
llm,
vector_store.as_retriever(search_kwargs={"k": k}),
prompt,
verbose=True,
)
try:
stream_generator = retrieval_chain.stream_chat_response(
query=query,
chat_id=chat_id,
get_chat_history=chat_manager.get_chat_history,
initialize_chat_history=chat_manager.initialize_chat_history,
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing chat query: {str(e)}")
return StreamingResponse(stream_generator, media_type="text/event-stream")
# ----------------------- Add Document Endpoint -----------------------
from typing import Any, Optional
@app.post("/add_document")
async def add_document(
file: Optional[Any] = File(None),
wiki_query: Optional[str] = Query(None),
wiki_url: Optional[str] = Query(None)
):
"""
Upload a document OR load data from a Wikipedia query or URL.
- If a file is provided, the document is loaded from the file.
- If 'wiki_query' is provided, the Wikipedia page(s) are loaded using document_loader.wikipedia_query.
- If 'wiki_url' is provided, the URL is loaded using document_loader.load_urls.
The loaded document(s) are then split into chunks and added to the vector store.
"""
# If file is provided but not as an UploadFile (e.g. an empty string), set it to None.
if not isinstance(file, UploadFile):
file = None
# Ensure at least one input is provided.
if file is None and wiki_query is None and wiki_url is None:
raise HTTPException(status_code=400, detail="No document input provided (file, wiki_query, or wiki_url).")
# Load document(s) based on input priority: file > wiki_query > wiki_url.
if file is not None:
with tempfile.NamedTemporaryFile(delete=False) as tmp:
contents = await file.read()
tmp.write(contents)
tmp_filename = tmp.name
ext = file.filename.split(".")[-1].lower()
try:
if ext == "pdf":
documents = document_loader.load_pdf(tmp_filename)
elif ext == "csv":
documents = document_loader.load_csv(tmp_filename)
elif ext in ["doc", "docx"]:
documents = document_loader.load_doc(tmp_filename)
elif ext in ["html", "htm"]:
documents = document_loader.load_text_from_html(tmp_filename)
elif ext in ["md", "markdown"]:
documents = document_loader.load_markdown(tmp_filename)
else:
documents = document_loader.load_unstructured(tmp_filename)
except Exception as e:
os.remove(tmp_filename)
raise HTTPException(status_code=400, detail=f"Error loading document from file: {str(e)}")
os.remove(tmp_filename)
elif wiki_query is not None:
try:
documents = document_loader.wikipedia_query(wiki_query)
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error loading Wikipedia query: {str(e)}")
elif wiki_url is not None:
try:
documents = document_loader.load_urls([wiki_url])
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error loading URL: {str(e)}")
try:
chunks = text_splitter.split_documents(documents)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error splitting document: {str(e)}")
try:
ids = vector_store_manager.add_documents(chunks)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error indexing document chunks: {str(e)}")
return {"message": f"Added {len(chunks)} document chunks.", "ids": ids}
# ----------------------- Delete Document Endpoint -----------------------
@app.post("/delete_document")
def delete_document(ids: List[str]):
"""
Delete document(s) from the vector store using their IDs.
"""
try:
success = vector_store_manager.delete_documents(ids)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error deleting documents: {str(e)}")
if not success:
raise HTTPException(status_code=400, detail="Failed to delete documents.")
return {"message": f"Deleted documents with IDs: {ids}"}
# ----------------------- Save Vectorstore Endpoint -----------------------
@app.get("/save_vectorstore")
def save_vectorstore():
"""
Save the current vector store locally.
If it is a directory, it will be zipped.
Returns the file as a downloadable response.
"""
try:
save_result = vector_store_manager.save("faiss_index")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error saving vectorstore: {str(e)}")
return FileResponse(
path=save_result["file_path"],
media_type=save_result["media_type"],
filename=save_result["serve_filename"],
)
# ----------------------- Load Vectorstore Endpoint -----------------------
@app.post("/load_vectorstore")
async def load_vectorstore(file: UploadFile = File(...)):
"""
Load a vector store from an uploaded file (raw or zipped).
This will replace the current vector store.
"""
tmp_filename = None
try:
# Save the uploaded file content to a temporary file.
with tempfile.NamedTemporaryFile(delete=False) as tmp:
file_bytes = await file.read() # await to get bytes
tmp.write(file_bytes)
tmp_filename = tmp.name
instance, message = VectorStoreManager.load(tmp_filename, embeddings)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading vectorstore: {str(e)}")
finally:
if tmp_filename and os.path.exists(tmp_filename):
os.remove(tmp_filename)
global vector_store_manager
vector_store_manager = instance
return {"message": message}
# ----------------------- Merge Vectorstore Endpoint -----------------------
@app.post("/merge_vectorstore")
async def merge_vectorstore(file: UploadFile = File(...)):
"""
Merge an uploaded vector store (raw or zipped) into the current vector store.
"""
tmp_filename = None
try:
# Save the uploaded file content to a temporary file.
with tempfile.NamedTemporaryFile(delete=False) as tmp:
file_bytes = await file.read() # Await the file.read() coroutine!
tmp.write(file_bytes)
tmp_filename = tmp.name
# Pass the filename (a string) to the merge method.
result = vector_store_manager.merge(tmp_filename, embeddings)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error merging vectorstore: {str(e)}")
finally:
if tmp_filename and os.path.exists(tmp_filename):
os.remove(tmp_filename)
return result
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)