Spaces:
Running
Running
File size: 13,428 Bytes
7b7cab6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import os
import tempfile
import zipfile
from typing import List, Optional
from fastapi import FastAPI, File, UploadFile, HTTPException, Query
from fastapi.responses import FileResponse, StreamingResponse
from llm_initialization import get_llm
from embedding import get_embeddings
from document_loaders import DocumentLoader
from text_splitter import TextSplitter
from vector_store import VectorStoreManager
from prompt_templates import PromptTemplates
from chat_management import ChatManagement
from retrieval_chain import RetrievalChain
from urllib.parse import quote_plus
from dotenv import load_dotenv
from pymongo import MongoClient
# Load environment variables
load_dotenv()
MONGO_PASSWORD = quote_plus(os.getenv("MONGO_PASSWORD"))
MONGO_DATABASE_NAME = os.getenv("DATABASE_NAME")
MONGO_COLLECTION_NAME = os.getenv("COLLECTION_NAME")
MONGO_CLUSTER_URL = os.getenv("CONNECTION_STRING")
app = FastAPI(title="VectorStore & Document Management API")
# Global variables (initialized on startup)
llm = None
embeddings = None
chat_manager = None
document_loader = None
text_splitter = None
vector_store_manager = None
vector_store = None
k = 3 # Number of documents to retrieve per query
# Global MongoDB collection to store retrieval chain configuration per chat session.
chat_chains_collection = None
# ----------------------- Startup Event -----------------------
@app.on_event("startup")
async def startup_event():
global llm, embeddings, chat_manager, document_loader, text_splitter, vector_store_manager, vector_store, chat_chains_collection
print("Starting up: Initializing components...")
# Initialize LLM and embeddings
llm = get_llm()
print("LLM initialized.")
embeddings = get_embeddings()
print("Embeddings initialized.")
# Setup chat management
chat_manager = ChatManagement(
cluster_url=MONGO_CLUSTER_URL,
database_name=MONGO_DATABASE_NAME,
collection_name=MONGO_COLLECTION_NAME,
)
print("Chat management initialized.")
# Initialize document loader and text splitter
document_loader = DocumentLoader()
text_splitter = TextSplitter()
print("Document loader and text splitter initialized.")
# Initialize vector store manager and ensure vectorstore is set
vector_store_manager = VectorStoreManager(embeddings)
vector_store = vector_store_manager.vectorstore # Now properly initialized
print("Vector store initialized.")
# Connect to MongoDB and get the collection.
client = MongoClient(MONGO_CLUSTER_URL)
db = client[MONGO_DATABASE_NAME]
chat_chains_collection = db["chat_chains"]
print("Chat chains collection initialized in MongoDB.")
# ----------------------- Root Endpoint -----------------------
@app.get("/")
def root():
"""
Root endpoint that returns a welcome message.
"""
return {"message": "Welcome to the VectorStore & Document Management API!"}
# ----------------------- New Chat Endpoint -----------------------
@app.post("/new_chat")
def new_chat():
"""
Create a new chat session.
"""
new_chat_id = chat_manager.create_new_chat()
return {"chat_id": new_chat_id}
# ----------------------- Create Chain Endpoint -----------------------
@app.post("/create_chain")
def create_chain(
chat_id: str = Query(..., description="Existing chat session ID"),
template: str = Query(
"quiz_solving",
description="Select prompt template. Options: quiz_solving, assignment_solving, paper_solving, quiz_creation, assignment_creation, paper_creation",
),
):
global chat_chains_collection # Ensure we reference the global variable
valid_templates = [
"quiz_solving",
"assignment_solving",
"paper_solving",
"quiz_creation",
"assignment_creation",
"paper_creation",
]
if template not in valid_templates:
raise HTTPException(status_code=400, detail="Invalid template selection.")
# Upsert the configuration document for this chat session.
chat_chains_collection.update_one(
{"chat_id": chat_id}, {"$set": {"template": template}}, upsert=True
)
return {"message": "Retrieval chain configuration stored successfully.", "chat_id": chat_id, "template": template}
# ----------------------- Chat Endpoint -----------------------
@app.get("/chat")
def chat(query: str, chat_id: str = Query(..., description="Chat session ID created via /new_chat and configured via /create_chain")):
"""
Process a chat query using the retrieval chain associated with the given chat_id.
This endpoint uses the following code:
try:
stream_generator = retrieval_chain.stream_chat_response(
query=query,
chat_id=chat_id,
get_chat_history=chat_manager.get_chat_history,
initialize_chat_history=chat_manager.initialize_chat_history,
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing chat query: {str(e)}")
return StreamingResponse(stream_generator, media_type="text/event-stream")
It first retrieves the configuration from MongoDB, re-creates the chain, and then streams the response.
"""
# Retrieve the chat configuration from MongoDB.
config = chat_chains_collection.find_one({"chat_id": chat_id})
if not config:
raise HTTPException(status_code=400, detail="Chat configuration not found. Please create a chain using /create_chain.")
template = config.get("template", "quiz_solving")
if template == "quiz_solving":
prompt = PromptTemplates.get_quiz_solving_prompt()
elif template == "assignment_solving":
prompt = PromptTemplates.get_assignment_solving_prompt()
elif template == "paper_solving":
prompt = PromptTemplates.get_paper_solving_prompt()
elif template == "quiz_creation":
prompt = PromptTemplates.get_quiz_creation_prompt()
elif template == "assignment_creation":
prompt = PromptTemplates.get_assignment_creation_prompt()
elif template == "paper_creation":
prompt = PromptTemplates.get_paper_creation_prompt()
else:
raise HTTPException(status_code=400, detail="Invalid chat configuration.")
# Re-create the retrieval chain for this chat session.
retrieval_chain = RetrievalChain(
llm,
vector_store.as_retriever(search_kwargs={"k": k}),
prompt,
verbose=True,
)
try:
stream_generator = retrieval_chain.stream_chat_response(
query=query,
chat_id=chat_id,
get_chat_history=chat_manager.get_chat_history,
initialize_chat_history=chat_manager.initialize_chat_history,
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing chat query: {str(e)}")
return StreamingResponse(stream_generator, media_type="text/event-stream")
# ----------------------- Add Document Endpoint -----------------------
from typing import Any, Optional
@app.post("/add_document")
async def add_document(
file: Optional[Any] = File(None),
wiki_query: Optional[str] = Query(None),
wiki_url: Optional[str] = Query(None)
):
"""
Upload a document OR load data from a Wikipedia query or URL.
- If a file is provided, the document is loaded from the file.
- If 'wiki_query' is provided, the Wikipedia page(s) are loaded using document_loader.wikipedia_query.
- If 'wiki_url' is provided, the URL is loaded using document_loader.load_urls.
The loaded document(s) are then split into chunks and added to the vector store.
"""
# If file is provided but not as an UploadFile (e.g. an empty string), set it to None.
if not isinstance(file, UploadFile):
file = None
# Ensure at least one input is provided.
if file is None and wiki_query is None and wiki_url is None:
raise HTTPException(status_code=400, detail="No document input provided (file, wiki_query, or wiki_url).")
# Load document(s) based on input priority: file > wiki_query > wiki_url.
if file is not None:
with tempfile.NamedTemporaryFile(delete=False) as tmp:
contents = await file.read()
tmp.write(contents)
tmp_filename = tmp.name
ext = file.filename.split(".")[-1].lower()
try:
if ext == "pdf":
documents = document_loader.load_pdf(tmp_filename)
elif ext == "csv":
documents = document_loader.load_csv(tmp_filename)
elif ext in ["doc", "docx"]:
documents = document_loader.load_doc(tmp_filename)
elif ext in ["html", "htm"]:
documents = document_loader.load_text_from_html(tmp_filename)
elif ext in ["md", "markdown"]:
documents = document_loader.load_markdown(tmp_filename)
else:
documents = document_loader.load_unstructured(tmp_filename)
except Exception as e:
os.remove(tmp_filename)
raise HTTPException(status_code=400, detail=f"Error loading document from file: {str(e)}")
os.remove(tmp_filename)
elif wiki_query is not None:
try:
documents = document_loader.wikipedia_query(wiki_query)
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error loading Wikipedia query: {str(e)}")
elif wiki_url is not None:
try:
documents = document_loader.load_urls([wiki_url])
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error loading URL: {str(e)}")
try:
chunks = text_splitter.split_documents(documents)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error splitting document: {str(e)}")
try:
ids = vector_store_manager.add_documents(chunks)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error indexing document chunks: {str(e)}")
return {"message": f"Added {len(chunks)} document chunks.", "ids": ids}
# ----------------------- Delete Document Endpoint -----------------------
@app.post("/delete_document")
def delete_document(ids: List[str]):
"""
Delete document(s) from the vector store using their IDs.
"""
try:
success = vector_store_manager.delete_documents(ids)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error deleting documents: {str(e)}")
if not success:
raise HTTPException(status_code=400, detail="Failed to delete documents.")
return {"message": f"Deleted documents with IDs: {ids}"}
# ----------------------- Save Vectorstore Endpoint -----------------------
@app.get("/save_vectorstore")
def save_vectorstore():
"""
Save the current vector store locally.
If it is a directory, it will be zipped.
Returns the file as a downloadable response.
"""
try:
save_result = vector_store_manager.save("faiss_index")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error saving vectorstore: {str(e)}")
return FileResponse(
path=save_result["file_path"],
media_type=save_result["media_type"],
filename=save_result["serve_filename"],
)
# ----------------------- Load Vectorstore Endpoint -----------------------
@app.post("/load_vectorstore")
async def load_vectorstore(file: UploadFile = File(...)):
"""
Load a vector store from an uploaded file (raw or zipped).
This will replace the current vector store.
"""
tmp_filename = None
try:
# Save the uploaded file content to a temporary file.
with tempfile.NamedTemporaryFile(delete=False) as tmp:
file_bytes = await file.read() # await to get bytes
tmp.write(file_bytes)
tmp_filename = tmp.name
instance, message = VectorStoreManager.load(tmp_filename, embeddings)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading vectorstore: {str(e)}")
finally:
if tmp_filename and os.path.exists(tmp_filename):
os.remove(tmp_filename)
global vector_store_manager
vector_store_manager = instance
return {"message": message}
# ----------------------- Merge Vectorstore Endpoint -----------------------
@app.post("/merge_vectorstore")
async def merge_vectorstore(file: UploadFile = File(...)):
"""
Merge an uploaded vector store (raw or zipped) into the current vector store.
"""
tmp_filename = None
try:
# Save the uploaded file content to a temporary file.
with tempfile.NamedTemporaryFile(delete=False) as tmp:
file_bytes = await file.read() # Await the file.read() coroutine!
tmp.write(file_bytes)
tmp_filename = tmp.name
# Pass the filename (a string) to the merge method.
result = vector_store_manager.merge(tmp_filename, embeddings)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error merging vectorstore: {str(e)}")
finally:
if tmp_filename and os.path.exists(tmp_filename):
os.remove(tmp_filename)
return result
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|