|
import os |
|
import warnings |
|
import pandas as pd |
|
import numpy as np |
|
from sklearn.ensemble import RandomForestClassifier |
|
from sklearn.metrics import accuracy_score, classification_report |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.preprocessing import MinMaxScaler |
|
import matplotlib.pyplot as plt |
|
import gradio as gr |
|
|
|
|
|
|
|
class My_RandomForest: |
|
def __init__(self): |
|
self.target_column = "Experience_Level" |
|
self.models = { |
|
"Male": None, |
|
"Female": None, |
|
"Unspecified": None |
|
} |
|
|
|
|
|
self.n_estimators = 10000 |
|
self.max_depth = 4 |
|
self.max_features = 'sqrt' |
|
self.criterion = 'gini' |
|
|
|
self.accuracies = {"Male": None, "Female": None, "Unspecified": None} |
|
|
|
self.selected_features = { |
|
"Male": ["Workout_Frequency (days/week)", "Session_Duration (hours)", "Water_Intake (liters)"], |
|
"Female": ["Workout_Frequency (days/week)", "Session_Duration (hours)", "Water_Intake (liters)"], |
|
"Unspecified": ["Workout_Frequency (days/week)", "Session_Duration (hours)", "Water_Intake (liters)"] |
|
} |
|
|
|
self.scaler = MinMaxScaler() |
|
self.init_dataset() |
|
|
|
def init_dataset(self): |
|
|
|
csv_file = os.path.join("data", "gym_members_exercise_tracking.csv") |
|
df_original = pd.read_csv(csv_file) |
|
self.df_original = df_original |
|
|
|
def train_model(self, gender="Unspecified"): |
|
if gender not in self.models: |
|
raise ValueError("Invalid gender specified. Choose from 'Male', 'Female', or 'Unspecified'.") |
|
|
|
|
|
if gender == "Male": |
|
df_filtered = self.df_original[self.df_original["Gender"] == "Male"] |
|
elif gender == "Female": |
|
df_filtered = self.df_original[self.df_original["Gender"] == "Female"] |
|
else: |
|
df_filtered = self.df_original |
|
|
|
features = self.selected_features[gender] |
|
X = df_filtered[features] |
|
y = df_filtered[self.target_column] |
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
self.scaler.fit(X_train) |
|
X_train = self.scaler.transform(X_train) |
|
X_test = self.scaler.transform(X_test) |
|
|
|
|
|
model = RandomForestClassifier( |
|
n_estimators=self.n_estimators, |
|
max_depth=self.max_depth, |
|
max_features=self.max_features, |
|
criterion=self.criterion, |
|
random_state=42 |
|
) |
|
model.fit(X_train, y_train) |
|
|
|
|
|
y_pred = model.predict(X_test) |
|
accuracy = accuracy_score(y_test, y_pred) |
|
|
|
|
|
|
|
|
|
|
|
self.models[gender] = model |
|
self.accuracies[gender] = accuracy |
|
|
|
def predict(self, input_data: pd.DataFrame, gender="Unspecified"): |
|
if gender not in self.models or self.models[gender] is None: |
|
raise ValueError(f"Model for {gender} is not trained yet.") |
|
|
|
features = self.selected_features[gender] |
|
scaled_input = self.scaler.transform(input_data[features]) |
|
prediction = self.models[gender].predict(scaled_input) |
|
return prediction |
|
|
|
|
|
|
|
|