Update RandomForest/RandomForestClass.py
Browse files- RandomForest/RandomForestClass.py +101 -101
RandomForest/RandomForestClass.py
CHANGED
@@ -1,101 +1,101 @@
|
|
1 |
-
import os
|
2 |
-
import warnings
|
3 |
-
import pandas as pd
|
4 |
-
import numpy as np
|
5 |
-
from sklearn.ensemble import RandomForestClassifier
|
6 |
-
from sklearn.metrics import accuracy_score, classification_report
|
7 |
-
from sklearn.model_selection import train_test_split
|
8 |
-
from sklearn.preprocessing import MinMaxScaler
|
9 |
-
import matplotlib.pyplot as plt
|
10 |
-
import gradio as gr
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
class My_RandomForest:
|
15 |
-
def __init__(self):
|
16 |
-
self.target_column = "Experience_Level" # Change to suit your classification target
|
17 |
-
self.models = {
|
18 |
-
"Male": None,
|
19 |
-
"Female": None,
|
20 |
-
"Unspecified": None
|
21 |
-
}
|
22 |
-
|
23 |
-
# Default parameters
|
24 |
-
self.n_estimators = 10000 # Number of trees
|
25 |
-
self.max_depth = 4 # Maximum tree depth
|
26 |
-
self.max_features = 'sqrt'
|
27 |
-
self.criterion = 'gini'
|
28 |
-
|
29 |
-
self.accuracies = {"Male": None, "Female": None, "Unspecified": None} # Store accuracies
|
30 |
-
|
31 |
-
self.selected_features = {
|
32 |
-
"Male": ["Workout_Frequency (days/week)", "Session_Duration (hours)", "Water_Intake (liters)"],
|
33 |
-
"Female": ["Workout_Frequency (days/week)", "Session_Duration (hours)", "Water_Intake (liters)"],
|
34 |
-
"Unspecified": ["Workout_Frequency (days/week)", "Session_Duration (hours)", "Water_Intake (liters)"]
|
35 |
-
}
|
36 |
-
|
37 |
-
self.scaler = MinMaxScaler() # Initialize the scaler
|
38 |
-
self.init_dataset()
|
39 |
-
|
40 |
-
def init_dataset(self):
|
41 |
-
# Load the dataset
|
42 |
-
csv_file = os.path.join("
|
43 |
-
df_original = pd.read_csv(csv_file)
|
44 |
-
self.df_original = df_original
|
45 |
-
|
46 |
-
def train_model(self, gender="Unspecified"):
|
47 |
-
if gender not in self.models:
|
48 |
-
raise ValueError("Invalid gender specified. Choose from 'Male', 'Female', or 'Unspecified'.")
|
49 |
-
|
50 |
-
# Filter data by gender for training specific models
|
51 |
-
if gender == "Male":
|
52 |
-
df_filtered = self.df_original[self.df_original["Gender"] == "Male"]
|
53 |
-
elif gender == "Female":
|
54 |
-
df_filtered = self.df_original[self.df_original["Gender"] == "Female"]
|
55 |
-
else:
|
56 |
-
df_filtered = self.df_original # Use all data for Unspecified
|
57 |
-
|
58 |
-
features = self.selected_features[gender]
|
59 |
-
X = df_filtered[features]
|
60 |
-
y = df_filtered[self.target_column]
|
61 |
-
|
62 |
-
# Split the data into training and testing sets
|
63 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
64 |
-
|
65 |
-
# Fit the scaler on the training data and transform both sets
|
66 |
-
self.scaler.fit(X_train)
|
67 |
-
X_train = self.scaler.transform(X_train)
|
68 |
-
X_test = self.scaler.transform(X_test)
|
69 |
-
|
70 |
-
# Initialize and train the Random Forest model
|
71 |
-
model = RandomForestClassifier(
|
72 |
-
n_estimators=self.n_estimators,
|
73 |
-
max_depth=self.max_depth,
|
74 |
-
max_features=self.max_features,
|
75 |
-
criterion=self.criterion,
|
76 |
-
random_state=42
|
77 |
-
)
|
78 |
-
model.fit(X_train, y_train)
|
79 |
-
|
80 |
-
# Evaluate the model
|
81 |
-
y_pred = model.predict(X_test)
|
82 |
-
accuracy = accuracy_score(y_test, y_pred)
|
83 |
-
|
84 |
-
#print(f"{gender} Model Accuracy: {accuracy:.4f}")
|
85 |
-
#print(f"{gender} Model Classification Report:")
|
86 |
-
#print(classification_report(y_test, y_pred))
|
87 |
-
|
88 |
-
self.models[gender] = model
|
89 |
-
self.accuracies[gender] = accuracy # Store the accuracy
|
90 |
-
|
91 |
-
def predict(self, input_data: pd.DataFrame, gender="Unspecified"):
|
92 |
-
if gender not in self.models or self.models[gender] is None:
|
93 |
-
raise ValueError(f"Model for {gender} is not trained yet.")
|
94 |
-
|
95 |
-
features = self.selected_features[gender]
|
96 |
-
scaled_input = self.scaler.transform(input_data[features])
|
97 |
-
prediction = self.models[gender].predict(scaled_input)
|
98 |
-
return prediction
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
1 |
+
import os
|
2 |
+
import warnings
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from sklearn.ensemble import RandomForestClassifier
|
6 |
+
from sklearn.metrics import accuracy_score, classification_report
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
from sklearn.preprocessing import MinMaxScaler
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
class My_RandomForest:
|
15 |
+
def __init__(self):
|
16 |
+
self.target_column = "Experience_Level" # Change to suit your classification target
|
17 |
+
self.models = {
|
18 |
+
"Male": None,
|
19 |
+
"Female": None,
|
20 |
+
"Unspecified": None
|
21 |
+
}
|
22 |
+
|
23 |
+
# Default parameters
|
24 |
+
self.n_estimators = 10000 # Number of trees
|
25 |
+
self.max_depth = 4 # Maximum tree depth
|
26 |
+
self.max_features = 'sqrt'
|
27 |
+
self.criterion = 'gini'
|
28 |
+
|
29 |
+
self.accuracies = {"Male": None, "Female": None, "Unspecified": None} # Store accuracies
|
30 |
+
|
31 |
+
self.selected_features = {
|
32 |
+
"Male": ["Workout_Frequency (days/week)", "Session_Duration (hours)", "Water_Intake (liters)"],
|
33 |
+
"Female": ["Workout_Frequency (days/week)", "Session_Duration (hours)", "Water_Intake (liters)"],
|
34 |
+
"Unspecified": ["Workout_Frequency (days/week)", "Session_Duration (hours)", "Water_Intake (liters)"]
|
35 |
+
}
|
36 |
+
|
37 |
+
self.scaler = MinMaxScaler() # Initialize the scaler
|
38 |
+
self.init_dataset()
|
39 |
+
|
40 |
+
def init_dataset(self):
|
41 |
+
# Load the dataset
|
42 |
+
csv_file = os.path.join("data", "gym_members_exercise_tracking.csv")
|
43 |
+
df_original = pd.read_csv(csv_file)
|
44 |
+
self.df_original = df_original
|
45 |
+
|
46 |
+
def train_model(self, gender="Unspecified"):
|
47 |
+
if gender not in self.models:
|
48 |
+
raise ValueError("Invalid gender specified. Choose from 'Male', 'Female', or 'Unspecified'.")
|
49 |
+
|
50 |
+
# Filter data by gender for training specific models
|
51 |
+
if gender == "Male":
|
52 |
+
df_filtered = self.df_original[self.df_original["Gender"] == "Male"]
|
53 |
+
elif gender == "Female":
|
54 |
+
df_filtered = self.df_original[self.df_original["Gender"] == "Female"]
|
55 |
+
else:
|
56 |
+
df_filtered = self.df_original # Use all data for Unspecified
|
57 |
+
|
58 |
+
features = self.selected_features[gender]
|
59 |
+
X = df_filtered[features]
|
60 |
+
y = df_filtered[self.target_column]
|
61 |
+
|
62 |
+
# Split the data into training and testing sets
|
63 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
64 |
+
|
65 |
+
# Fit the scaler on the training data and transform both sets
|
66 |
+
self.scaler.fit(X_train)
|
67 |
+
X_train = self.scaler.transform(X_train)
|
68 |
+
X_test = self.scaler.transform(X_test)
|
69 |
+
|
70 |
+
# Initialize and train the Random Forest model
|
71 |
+
model = RandomForestClassifier(
|
72 |
+
n_estimators=self.n_estimators,
|
73 |
+
max_depth=self.max_depth,
|
74 |
+
max_features=self.max_features,
|
75 |
+
criterion=self.criterion,
|
76 |
+
random_state=42
|
77 |
+
)
|
78 |
+
model.fit(X_train, y_train)
|
79 |
+
|
80 |
+
# Evaluate the model
|
81 |
+
y_pred = model.predict(X_test)
|
82 |
+
accuracy = accuracy_score(y_test, y_pred)
|
83 |
+
|
84 |
+
#print(f"{gender} Model Accuracy: {accuracy:.4f}")
|
85 |
+
#print(f"{gender} Model Classification Report:")
|
86 |
+
#print(classification_report(y_test, y_pred))
|
87 |
+
|
88 |
+
self.models[gender] = model
|
89 |
+
self.accuracies[gender] = accuracy # Store the accuracy
|
90 |
+
|
91 |
+
def predict(self, input_data: pd.DataFrame, gender="Unspecified"):
|
92 |
+
if gender not in self.models or self.models[gender] is None:
|
93 |
+
raise ValueError(f"Model for {gender} is not trained yet.")
|
94 |
+
|
95 |
+
features = self.selected_features[gender]
|
96 |
+
scaled_input = self.scaler.transform(input_data[features])
|
97 |
+
prediction = self.models[gender].predict(scaled_input)
|
98 |
+
return prediction
|
99 |
+
|
100 |
+
|
101 |
+
|