File size: 13,439 Bytes
e59dc66 57d5e90 f666747 02532a9 e59dc66 02532a9 f666747 5b040dc 57d5e90 e59dc66 f8e5af1 02532a9 f8e5af1 02532a9 f8e5af1 02532a9 f8e5af1 57d5e90 ce32a95 f8e5af1 57d5e90 ce32a95 57d5e90 ce32a95 57d5e90 02532a9 ce32a95 57d5e90 ce32a95 57d5e90 f8e5af1 ce32a95 e59dc66 ce32a95 e59dc66 ce32a95 e59dc66 ce32a95 e59dc66 ce32a95 e59dc66 ce32a95 b3a024e ce32a95 da1f9eb ce32a95 da1f9eb ce32a95 b3a024e ce32a95 e59dc66 ce32a95 e59dc66 ce32a95 02532a9 ce32a95 02532a9 ce32a95 e59dc66 f8e5af1 ce32a95 57d5e90 f8e5af1 ce32a95 f8e5af1 e59dc66 f8e5af1 ce32a95 f8e5af1 e59dc66 f8e5af1 ce32a95 02532a9 ce32a95 02532a9 ce32a95 e59dc66 f8e5af1 e59dc66 ce32a95 2d5a207 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import gradio as gr
from PIL import Image
import os
import time
import numpy as np
import torch
import warnings
import stat
import subprocess
import sys
# Set environment variables
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
# Print system information
print(f"Python version: {sys.version}")
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available via PyTorch: {torch.cuda.is_available()}")
print(f"CUDA version via PyTorch: {torch.version.cuda if torch.cuda.is_available() else 'Not available'}")
# Try to run nvidia-smi
def run_nvidia_smi():
try:
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode == 0:
print("nvidia-smi output:")
print(result.stdout)
return True
else:
print("nvidia-smi error:")
print(result.stderr)
return False
except Exception as e:
print(f"Error running nvidia-smi: {str(e)}")
return False
# Run nvidia-smi
nvidia_smi_available = run_nvidia_smi()
print(f"nvidia-smi available: {nvidia_smi_available}")
# Show CUDA devices
if torch.cuda.is_available():
print(f"CUDA device count: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
print(f"CUDA Device {i}: {torch.cuda.get_device_name(i)}")
print(f"Current CUDA device: {torch.cuda.current_device()}")
# Ensure all cache directories exist with proper permissions
def setup_cache_directories():
# Gradio cache directory
cache_dir = os.path.join(os.getcwd(), "gradio_cached_examples")
os.makedirs(cache_dir, exist_ok=True)
# HuggingFace cache directories
hf_cache = os.path.join(os.getcwd(), ".cache", "huggingface")
transformers_cache = os.path.join(hf_cache, "transformers")
os.makedirs(hf_cache, exist_ok=True)
os.makedirs(transformers_cache, exist_ok=True)
# Set permissions
try:
for directory in [cache_dir, hf_cache, transformers_cache]:
if os.path.exists(directory):
os.chmod(directory, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO) # 0o777
print(f"Set permissions for {directory}")
except Exception as e:
print(f"Warning: Could not set permissions: {str(e)}")
return cache_dir
# Set up cache directories
cache_dir = setup_cache_directories()
# Suppress specific warnings that might be caused by package version mismatches
warnings.filterwarnings("ignore", message=".*The 'nopython' keyword.*")
warnings.filterwarnings("ignore", message=".*Torch is not compiled with CUDA enabled.*")
warnings.filterwarnings("ignore", category=UserWarning)
# Check for actual GPU availability
def check_gpu_availability():
"""Check if GPU is actually available and working"""
print("Checking GPU availability...")
if not torch.cuda.is_available():
print("CUDA is not available in PyTorch")
return False
try:
# Try to initialize CUDA and run a simple operation
print("Attempting to create a tensor on CUDA...")
x = torch.rand(10, device="cuda")
y = x + x
print("Successfully created and operated on CUDA tensor")
return True
except Exception as e:
print(f"GPU initialization failed: {str(e)}")
return False
# Global variables
internvl2_model = None
USE_GPU = check_gpu_availability()
if USE_GPU:
print("GPU is available and working properly")
else:
print("WARNING: GPU is not available or not working properly. This application requires GPU acceleration.")
# ALTERNATIVE MODEL: Let's try a simpler vision model as backup
try:
from transformers import BlipProcessor, BlipForConditionalGeneration
HAS_BLIP = True
blip_processor = None
blip_model = None
print("Successfully imported BLIP model")
except ImportError:
HAS_BLIP = False
print("BLIP model not available, will try InternVL2")
# Try importing lmdeploy for InternVL2
try:
from lmdeploy import pipeline, TurbomindEngineConfig
HAS_LMDEPLOY = True
print("Successfully imported lmdeploy")
except ImportError as e:
HAS_LMDEPLOY = False
print(f"lmdeploy import failed: {str(e)}. Will try backup model.")
# Try to load the appropriate model
def load_model():
global internvl2_model, blip_processor, blip_model
if not USE_GPU:
print("Cannot load models without GPU acceleration.")
return False
# First try to load InternVL2 if lmdeploy is available
if HAS_LMDEPLOY:
try:
print("Attempting to load InternVL2 model...")
# Configure for AWQ quantized model
backend_config = TurbomindEngineConfig(
model_format='awq',
session_len=2048 # Explicitly set session length
)
# Set to non-streaming mode
internvl2_model = pipeline(
"OpenGVLab/InternVL2-40B-AWQ",
backend_config=backend_config,
model_name_or_path=None,
backend_name="turbomind",
stream=False, # Disable streaming
)
print("InternVL2 model loaded successfully!")
return True
except Exception as e:
print(f"Failed to load InternVL2: {str(e)}")
internvl2_model = None
# If InternVL2 failed or lmdeploy not available, try BLIP
if HAS_BLIP:
try:
print("Falling back to BLIP model...")
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cuda")
print("BLIP model loaded successfully!")
return True
except Exception as e:
print(f"Failed to load BLIP: {str(e)}")
blip_processor = None
blip_model = None
print("Could not load any model")
return False
# Try to load a model at startup
MODEL_LOADED = load_model()
WHICH_MODEL = "InternVL2" if internvl2_model is not None else "BLIP" if blip_model is not None else "None"
def analyze_image(image, prompt):
"""Analyze the image using available model"""
if not MODEL_LOADED:
return "No model could be loaded. Please check the logs for details."
if not USE_GPU:
return "ERROR: This application requires GPU acceleration. No GPU detected."
try:
# Convert image to right format if needed
if isinstance(image, np.ndarray):
pil_image = Image.fromarray(image).convert('RGB')
else:
pil_image = image.convert('RGB')
# If we have InternVL2 loaded, use it
if internvl2_model is not None:
try:
print("Running inference with InternVL2...")
response = internvl2_model((prompt, pil_image))
result = response.text if hasattr(response, "text") else str(response)
return f"[InternVL2] {result}"
except Exception as e:
print(f"Error with InternVL2: {str(e)}")
# If InternVL2 fails, fall back to BLIP if available
# If we have BLIP loaded, use it
if blip_model is not None and blip_processor is not None:
try:
print("Running inference with BLIP...")
# BLIP doesn't use prompts the same way, simplify
inputs = blip_processor(pil_image, return_tensors="pt").to("cuda")
out = blip_model.generate(**inputs, max_new_tokens=100)
result = blip_processor.decode(out[0], skip_special_tokens=True)
return f"[BLIP] {result} (Note: Custom prompts not supported with BLIP fallback model)"
except Exception as e:
print(f"Error with BLIP: {str(e)}")
return "No model was able to analyze the image. See logs for details."
except Exception as e:
print(f"Error in image analysis: {str(e)}")
# Try to clean up memory in case of error
if USE_GPU:
torch.cuda.empty_cache()
return f"Error in image analysis: {str(e)}"
def process_image(image, analysis_type="general"):
"""Process the image and return the analysis"""
if image is None:
return "Please upload an image."
# Define prompt based on analysis type
if analysis_type == "general":
prompt = "Describe this image in detail."
elif analysis_type == "text":
prompt = "What text can you see in this image? Please transcribe it accurately."
elif analysis_type == "chart":
prompt = "Analyze any charts, graphs or diagrams in this image in detail, including trends, data points, and conclusions."
elif analysis_type == "people":
prompt = "Describe the people in this image - their appearance, actions, and expressions."
elif analysis_type == "technical":
prompt = "Provide a technical analysis of this image, including object identification, spatial relationships, and any technical elements present."
else:
prompt = "Describe this image in detail."
start_time = time.time()
# Get analysis from the model
analysis = analyze_image(image, prompt)
elapsed_time = time.time() - start_time
return f"{analysis}\n\nAnalysis completed in {elapsed_time:.2f} seconds."
# Define the Gradio interface
def create_interface():
with gr.Blocks(title="Image Analysis with InternVL2") as demo:
gr.Markdown(f"# Image Analysis with {WHICH_MODEL}")
# System diagnostics
system_info = f"""
## System Diagnostics:
- Model Used: {WHICH_MODEL}
- Model Loaded: {MODEL_LOADED}
- PyTorch Version: {torch.__version__}
- CUDA Available: {torch.cuda.is_available()}
- GPU Working: {USE_GPU}
- nvidia-smi Available: {nvidia_smi_available}
"""
gr.Markdown(system_info)
gr.Markdown(f"Upload an image to analyze it using the {WHICH_MODEL} model.")
# Show warnings based on system status
if not MODEL_LOADED:
gr.Markdown("⚠️ **WARNING**: No model could be loaded. This demo will not function correctly.", elem_classes=["warning-message"])
if not USE_GPU:
gr.Markdown("🚫 **ERROR**: NVIDIA GPU not detected. This application requires GPU acceleration.", elem_classes=["error-message"])
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label="Upload Image")
analysis_type = gr.Radio(
["general", "text", "chart", "people", "technical"],
label="Analysis Type",
value="general"
)
submit_btn = gr.Button("Analyze Image")
# Disable button if GPU is not available or no model loaded
if not USE_GPU or not MODEL_LOADED:
submit_btn.interactive = False
with gr.Column(scale=2):
output_text = gr.Textbox(label="Analysis Result", lines=20)
if not USE_GPU:
output_text.value = f"""ERROR: NVIDIA GPU driver not detected. This application requires GPU acceleration.
Diagnostics:
- Model Used: {WHICH_MODEL}
- PyTorch Version: {torch.__version__}
- CUDA Available via PyTorch: {torch.cuda.is_available()}
- nvidia-smi Available: {nvidia_smi_available}
- GPU Working: {USE_GPU}
Please ensure this Space is using a GPU-enabled instance and that the GPU is correctly initialized."""
elif not MODEL_LOADED:
output_text.value = f"""ERROR: No model could be loaded.
Diagnostics:
- Model Used: {WHICH_MODEL}
- PyTorch Version: {torch.__version__}
- CUDA Available via PyTorch: {torch.cuda.is_available()}
- nvidia-smi Available: {nvidia_smi_available}
- GPU Working: {USE_GPU}
Please check the logs for more details."""
submit_btn.click(
fn=process_image,
inputs=[input_image, analysis_type],
outputs=output_text
)
gr.Markdown("""
## Analysis Types
- **General**: General description of the image
- **Text**: Focus on identifying and transcribing text in the image
- **Chart**: Detailed analysis of charts, graphs, and diagrams
- **People**: Description of people, their appearance and actions
- **Technical**: Technical analysis identifying objects and spatial relationships
""")
# Hardware requirements notice
gr.Markdown("""
## System Requirements
This application requires:
- NVIDIA GPU with CUDA support
- At least 16GB of GPU memory recommended
- GPU drivers properly installed and configured
If you're running this on Hugging Face Spaces, make sure to select a GPU-enabled hardware type.
""")
return demo
# Main function
if __name__ == "__main__":
# Create the Gradio interface
demo = create_interface()
# Launch the interface
demo.launch(share=False, server_name="0.0.0.0") |