Upload InternVL2 implementation
Browse files- app_internvl2.py +118 -216
app_internvl2.py
CHANGED
@@ -8,11 +8,6 @@ import warnings
|
|
8 |
import stat
|
9 |
import subprocess
|
10 |
import sys
|
11 |
-
import asyncio
|
12 |
-
import nest_asyncio
|
13 |
-
|
14 |
-
# Apply nest_asyncio to allow nested event loops
|
15 |
-
nest_asyncio.apply()
|
16 |
|
17 |
# Set environment variables
|
18 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
@@ -102,8 +97,7 @@ def check_gpu_availability():
|
|
102 |
return False
|
103 |
|
104 |
# Global variables
|
105 |
-
|
106 |
-
MODEL_LOADED = False
|
107 |
USE_GPU = check_gpu_availability()
|
108 |
|
109 |
if USE_GPU:
|
@@ -111,209 +105,119 @@ if USE_GPU:
|
|
111 |
else:
|
112 |
print("WARNING: GPU is not available or not working properly. This application requires GPU acceleration.")
|
113 |
|
114 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
try:
|
116 |
from lmdeploy import pipeline, TurbomindEngineConfig
|
117 |
-
|
118 |
print("Successfully imported lmdeploy")
|
119 |
except ImportError as e:
|
120 |
-
|
121 |
-
print(f"lmdeploy import failed: {str(e)}. Will
|
122 |
|
123 |
-
#
|
124 |
-
|
125 |
-
|
126 |
-
def load_internvl2_model():
|
127 |
-
"""Load the InternVL2 model using lmdeploy"""
|
128 |
-
global internvl2_pipeline, MODEL_LOADED
|
129 |
-
|
130 |
-
# If already loaded, return
|
131 |
-
if internvl2_pipeline is not None:
|
132 |
-
return True
|
133 |
|
134 |
-
# If lmdeploy is not available, we'll use a demo placeholder
|
135 |
-
if not LMDEPLOY_AVAILABLE:
|
136 |
-
print("lmdeploy not available. Using demo placeholder.")
|
137 |
-
MODEL_LOADED = False
|
138 |
-
return False
|
139 |
-
|
140 |
-
# Check if GPU is available
|
141 |
if not USE_GPU:
|
142 |
-
print("Cannot load
|
143 |
-
MODEL_LOADED = False
|
144 |
-
return False
|
145 |
-
|
146 |
-
print("Loading InternVL2 model...")
|
147 |
-
try:
|
148 |
-
# Force synchronous execution for everything
|
149 |
-
import os
|
150 |
-
# Set environment variables to force synchronous behavior
|
151 |
-
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
152 |
-
# Disable asyncio in lmdeploy
|
153 |
-
os.environ["LMDEPLOY_DISABLE_ASYNC"] = "1"
|
154 |
-
|
155 |
-
# Configure for AWQ quantized model
|
156 |
-
backend_config = TurbomindEngineConfig(
|
157 |
-
model_format='awq',
|
158 |
-
session_len=2048 # Explicitly set session length
|
159 |
-
)
|
160 |
-
|
161 |
-
# Create a synchronous pipeline to avoid asyncio issues
|
162 |
-
# Explicitly set all parameters that might default to async behavior
|
163 |
-
internvl2_pipeline = pipeline(
|
164 |
-
MODEL_ID,
|
165 |
-
backend_config=backend_config,
|
166 |
-
log_level='INFO',
|
167 |
-
model_name_or_path=None,
|
168 |
-
backend_name="turbomind",
|
169 |
-
stream=False, # Important: disable streaming
|
170 |
-
tensor_parallel=1, # Use single GPU to avoid distributed processing
|
171 |
-
)
|
172 |
-
|
173 |
-
print("InternVL2 model loaded successfully!")
|
174 |
-
MODEL_LOADED = True
|
175 |
-
return True
|
176 |
-
except Exception as e:
|
177 |
-
print(f"Error loading InternVL2 model: {str(e)}")
|
178 |
-
if "CUDA out of memory" in str(e):
|
179 |
-
print("Not enough GPU memory for the model")
|
180 |
-
elif "Found no NVIDIA driver" in str(e):
|
181 |
-
print("NVIDIA GPU driver not found or not properly configured")
|
182 |
-
MODEL_LOADED = False
|
183 |
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
def analyze_image(image, prompt):
|
186 |
-
"""Analyze the image using
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
try:
|
188 |
-
|
189 |
-
|
190 |
-
# Skip model loading if lmdeploy is not available
|
191 |
-
if not LMDEPLOY_AVAILABLE:
|
192 |
-
return ("This is a demo placeholder. The actual model couldn't be loaded because lmdeploy "
|
193 |
-
"is not properly installed. Check your installation and dependencies.")
|
194 |
-
|
195 |
-
# Check for GPU
|
196 |
-
if not USE_GPU:
|
197 |
-
return ("ERROR: This application requires a GPU to run InternVL2. "
|
198 |
-
"The NVIDIA driver was not detected on this system. "
|
199 |
-
"Please make sure this Space is using a GPU-enabled instance and that the GPU is correctly initialized.")
|
200 |
-
|
201 |
-
# Make sure the model is loaded
|
202 |
-
if not load_internvl2_model():
|
203 |
-
return "Couldn't load InternVL2 model. See logs for details."
|
204 |
-
|
205 |
-
# Convert numpy array to PIL Image
|
206 |
if isinstance(image, np.ndarray):
|
207 |
-
|
208 |
else:
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
# This runs the model in a separate process, avoiding any event loop conflicts
|
214 |
-
import multiprocessing as mp
|
215 |
-
|
216 |
-
# Define a function to run in a separate process
|
217 |
-
def run_in_process(prompt, image_path, result_queue):
|
218 |
try:
|
219 |
-
|
220 |
-
|
221 |
-
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
222 |
-
os.environ["LMDEPLOY_DISABLE_ASYNC"] = "1"
|
223 |
-
|
224 |
-
# Import libraries inside the process
|
225 |
-
from lmdeploy import pipeline, TurbomindEngineConfig
|
226 |
-
|
227 |
-
# Save the image to a temporary file to pass between processes
|
228 |
-
import tempfile
|
229 |
-
import torch
|
230 |
-
|
231 |
-
# Check GPU in subprocess
|
232 |
-
print(f"Subprocess GPU available: {torch.cuda.is_available()}")
|
233 |
-
|
234 |
-
# Configure for AWQ quantized model
|
235 |
-
backend_config = TurbomindEngineConfig(
|
236 |
-
model_format='awq',
|
237 |
-
session_len=2048
|
238 |
-
)
|
239 |
-
|
240 |
-
# Create new pipeline in the subprocess
|
241 |
-
model_pipeline = pipeline(
|
242 |
-
MODEL_ID,
|
243 |
-
backend_config=backend_config,
|
244 |
-
log_level='INFO',
|
245 |
-
model_name_or_path=None,
|
246 |
-
backend_name="turbomind",
|
247 |
-
stream=False,
|
248 |
-
tensor_parallel=1,
|
249 |
-
)
|
250 |
-
|
251 |
-
# Load the image in the subprocess
|
252 |
-
from PIL import Image
|
253 |
-
image = Image.open(image_path).convert('RGB')
|
254 |
-
|
255 |
-
# Run inference
|
256 |
-
response = model_pipeline((prompt, image))
|
257 |
result = response.text if hasattr(response, "text") else str(response)
|
|
|
|
|
|
|
|
|
258 |
|
259 |
-
|
260 |
-
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
except Exception as e:
|
263 |
-
|
264 |
-
error_msg = f"Error in subprocess: {str(e)}\n{traceback.format_exc()}"
|
265 |
-
result_queue.put(("error", error_msg))
|
266 |
|
267 |
-
|
268 |
-
import tempfile
|
269 |
-
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
|
270 |
-
temp_path = temp_file.name
|
271 |
-
image_pil.save(temp_path)
|
272 |
|
273 |
-
try:
|
274 |
-
# Create a process-safe queue
|
275 |
-
result_queue = mp.Queue()
|
276 |
-
|
277 |
-
# Start the process
|
278 |
-
print("Starting model inference in a separate process")
|
279 |
-
process = mp.Process(
|
280 |
-
target=run_in_process,
|
281 |
-
args=(prompt, temp_path, result_queue)
|
282 |
-
)
|
283 |
-
|
284 |
-
# Make it a daemon so it terminates when the main process ends
|
285 |
-
process.daemon = True
|
286 |
-
process.start()
|
287 |
-
|
288 |
-
# Wait for the process to complete (with timeout)
|
289 |
-
process.join(timeout=180) # 3 minute timeout
|
290 |
-
|
291 |
-
# Delete the temporary file
|
292 |
-
try:
|
293 |
-
os.unlink(temp_path)
|
294 |
-
except:
|
295 |
-
pass
|
296 |
-
|
297 |
-
if process.is_alive():
|
298 |
-
# Terminate the process if it's still running after timeout
|
299 |
-
process.terminate()
|
300 |
-
return "Model inference timed out after 180 seconds. The model might be too slow on this hardware."
|
301 |
-
|
302 |
-
# Get the result from the queue (non-blocking to avoid hanging)
|
303 |
-
if not result_queue.empty():
|
304 |
-
status, result = result_queue.get(block=False)
|
305 |
-
if status == "error":
|
306 |
-
return f"Error in model inference: {result}"
|
307 |
-
else:
|
308 |
-
elapsed_time = time.time() - start_time
|
309 |
-
return result
|
310 |
-
else:
|
311 |
-
return "Unknown error: Model inference process completed but did not produce a result"
|
312 |
-
|
313 |
-
except Exception as e:
|
314 |
-
print(f"Error in multiprocessing: {str(e)}")
|
315 |
-
return f"Error setting up multiprocessing: {str(e)}"
|
316 |
-
|
317 |
except Exception as e:
|
318 |
print(f"Error in image analysis: {str(e)}")
|
319 |
# Try to clean up memory in case of error
|
@@ -351,11 +255,13 @@ def process_image(image, analysis_type="general"):
|
|
351 |
# Define the Gradio interface
|
352 |
def create_interface():
|
353 |
with gr.Blocks(title="Image Analysis with InternVL2") as demo:
|
354 |
-
gr.Markdown("# Image Analysis with
|
355 |
|
356 |
# System diagnostics
|
357 |
system_info = f"""
|
358 |
## System Diagnostics:
|
|
|
|
|
359 |
- PyTorch Version: {torch.__version__}
|
360 |
- CUDA Available: {torch.cuda.is_available()}
|
361 |
- GPU Working: {USE_GPU}
|
@@ -363,14 +269,14 @@ def create_interface():
|
|
363 |
"""
|
364 |
|
365 |
gr.Markdown(system_info)
|
366 |
-
gr.Markdown("Upload an image to analyze it using the
|
367 |
|
368 |
# Show warnings based on system status
|
369 |
-
if not
|
370 |
-
gr.Markdown("⚠️ **WARNING**:
|
371 |
|
372 |
if not USE_GPU:
|
373 |
-
gr.Markdown("🚫 **ERROR**: NVIDIA GPU not detected. This application requires GPU acceleration
|
374 |
|
375 |
with gr.Row():
|
376 |
with gr.Column(scale=1):
|
@@ -382,22 +288,34 @@ def create_interface():
|
|
382 |
)
|
383 |
submit_btn = gr.Button("Analyze Image")
|
384 |
|
385 |
-
# Disable button if GPU is not available
|
386 |
-
if not USE_GPU:
|
387 |
submit_btn.interactive = False
|
388 |
|
389 |
with gr.Column(scale=2):
|
390 |
output_text = gr.Textbox(label="Analysis Result", lines=20)
|
391 |
if not USE_GPU:
|
392 |
-
output_text.value = f"""ERROR: NVIDIA GPU driver not detected. This application requires GPU acceleration
|
393 |
|
394 |
Diagnostics:
|
|
|
395 |
- PyTorch Version: {torch.__version__}
|
396 |
- CUDA Available via PyTorch: {torch.cuda.is_available()}
|
397 |
- nvidia-smi Available: {nvidia_smi_available}
|
398 |
- GPU Working: {USE_GPU}
|
399 |
|
400 |
Please ensure this Space is using a GPU-enabled instance and that the GPU is correctly initialized."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
|
402 |
submit_btn.click(
|
403 |
fn=process_image,
|
@@ -424,22 +342,6 @@ Please ensure this Space is using a GPU-enabled instance and that the GPU is cor
|
|
424 |
|
425 |
If you're running this on Hugging Face Spaces, make sure to select a GPU-enabled hardware type.
|
426 |
""")
|
427 |
-
|
428 |
-
# Examples
|
429 |
-
try:
|
430 |
-
gr.Examples(
|
431 |
-
examples=[
|
432 |
-
["data_temp/page_2.png", "general"],
|
433 |
-
["data_temp/page_2.png", "text"],
|
434 |
-
["data_temp/page_2.png", "chart"]
|
435 |
-
],
|
436 |
-
inputs=[input_image, analysis_type],
|
437 |
-
outputs=output_text,
|
438 |
-
fn=process_image,
|
439 |
-
cache_examples=True
|
440 |
-
)
|
441 |
-
except Exception as e:
|
442 |
-
print(f"Warning: Could not load examples: {str(e)}")
|
443 |
|
444 |
return demo
|
445 |
|
@@ -448,5 +350,5 @@ if __name__ == "__main__":
|
|
448 |
# Create the Gradio interface
|
449 |
demo = create_interface()
|
450 |
|
451 |
-
# Launch the interface
|
452 |
demo.launch(share=False, server_name="0.0.0.0")
|
|
|
8 |
import stat
|
9 |
import subprocess
|
10 |
import sys
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Set environment variables
|
13 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
|
|
97 |
return False
|
98 |
|
99 |
# Global variables
|
100 |
+
internvl2_model = None
|
|
|
101 |
USE_GPU = check_gpu_availability()
|
102 |
|
103 |
if USE_GPU:
|
|
|
105 |
else:
|
106 |
print("WARNING: GPU is not available or not working properly. This application requires GPU acceleration.")
|
107 |
|
108 |
+
# ALTERNATIVE MODEL: Let's try a simpler vision model as backup
|
109 |
+
try:
|
110 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
111 |
+
HAS_BLIP = True
|
112 |
+
blip_processor = None
|
113 |
+
blip_model = None
|
114 |
+
print("Successfully imported BLIP model")
|
115 |
+
except ImportError:
|
116 |
+
HAS_BLIP = False
|
117 |
+
print("BLIP model not available, will try InternVL2")
|
118 |
+
|
119 |
+
# Try importing lmdeploy for InternVL2
|
120 |
try:
|
121 |
from lmdeploy import pipeline, TurbomindEngineConfig
|
122 |
+
HAS_LMDEPLOY = True
|
123 |
print("Successfully imported lmdeploy")
|
124 |
except ImportError as e:
|
125 |
+
HAS_LMDEPLOY = False
|
126 |
+
print(f"lmdeploy import failed: {str(e)}. Will try backup model.")
|
127 |
|
128 |
+
# Try to load the appropriate model
|
129 |
+
def load_model():
|
130 |
+
global internvl2_model, blip_processor, blip_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
if not USE_GPU:
|
133 |
+
print("Cannot load models without GPU acceleration.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
return False
|
135 |
+
|
136 |
+
# First try to load InternVL2 if lmdeploy is available
|
137 |
+
if HAS_LMDEPLOY:
|
138 |
+
try:
|
139 |
+
print("Attempting to load InternVL2 model...")
|
140 |
+
# Configure for AWQ quantized model
|
141 |
+
backend_config = TurbomindEngineConfig(
|
142 |
+
model_format='awq',
|
143 |
+
session_len=2048 # Explicitly set session length
|
144 |
+
)
|
145 |
+
|
146 |
+
# Set to non-streaming mode
|
147 |
+
internvl2_model = pipeline(
|
148 |
+
"OpenGVLab/InternVL2-40B-AWQ",
|
149 |
+
backend_config=backend_config,
|
150 |
+
model_name_or_path=None,
|
151 |
+
backend_name="turbomind",
|
152 |
+
stream=False, # Disable streaming
|
153 |
+
)
|
154 |
+
|
155 |
+
print("InternVL2 model loaded successfully!")
|
156 |
+
return True
|
157 |
+
except Exception as e:
|
158 |
+
print(f"Failed to load InternVL2: {str(e)}")
|
159 |
+
internvl2_model = None
|
160 |
+
|
161 |
+
# If InternVL2 failed or lmdeploy not available, try BLIP
|
162 |
+
if HAS_BLIP:
|
163 |
+
try:
|
164 |
+
print("Falling back to BLIP model...")
|
165 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
166 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cuda")
|
167 |
+
print("BLIP model loaded successfully!")
|
168 |
+
return True
|
169 |
+
except Exception as e:
|
170 |
+
print(f"Failed to load BLIP: {str(e)}")
|
171 |
+
blip_processor = None
|
172 |
+
blip_model = None
|
173 |
+
|
174 |
+
print("Could not load any model")
|
175 |
+
return False
|
176 |
+
|
177 |
+
# Try to load a model at startup
|
178 |
+
MODEL_LOADED = load_model()
|
179 |
+
WHICH_MODEL = "InternVL2" if internvl2_model is not None else "BLIP" if blip_model is not None else "None"
|
180 |
|
181 |
def analyze_image(image, prompt):
|
182 |
+
"""Analyze the image using available model"""
|
183 |
+
if not MODEL_LOADED:
|
184 |
+
return "No model could be loaded. Please check the logs for details."
|
185 |
+
|
186 |
+
if not USE_GPU:
|
187 |
+
return "ERROR: This application requires GPU acceleration. No GPU detected."
|
188 |
+
|
189 |
try:
|
190 |
+
# Convert image to right format if needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
if isinstance(image, np.ndarray):
|
192 |
+
pil_image = Image.fromarray(image).convert('RGB')
|
193 |
else:
|
194 |
+
pil_image = image.convert('RGB')
|
195 |
+
|
196 |
+
# If we have InternVL2 loaded, use it
|
197 |
+
if internvl2_model is not None:
|
|
|
|
|
|
|
|
|
|
|
198 |
try:
|
199 |
+
print("Running inference with InternVL2...")
|
200 |
+
response = internvl2_model((prompt, pil_image))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
result = response.text if hasattr(response, "text") else str(response)
|
202 |
+
return f"[InternVL2] {result}"
|
203 |
+
except Exception as e:
|
204 |
+
print(f"Error with InternVL2: {str(e)}")
|
205 |
+
# If InternVL2 fails, fall back to BLIP if available
|
206 |
|
207 |
+
# If we have BLIP loaded, use it
|
208 |
+
if blip_model is not None and blip_processor is not None:
|
209 |
+
try:
|
210 |
+
print("Running inference with BLIP...")
|
211 |
+
# BLIP doesn't use prompts the same way, simplify
|
212 |
+
inputs = blip_processor(pil_image, return_tensors="pt").to("cuda")
|
213 |
+
out = blip_model.generate(**inputs, max_new_tokens=100)
|
214 |
+
result = blip_processor.decode(out[0], skip_special_tokens=True)
|
215 |
+
return f"[BLIP] {result} (Note: Custom prompts not supported with BLIP fallback model)"
|
216 |
except Exception as e:
|
217 |
+
print(f"Error with BLIP: {str(e)}")
|
|
|
|
|
218 |
|
219 |
+
return "No model was able to analyze the image. See logs for details."
|
|
|
|
|
|
|
|
|
220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
except Exception as e:
|
222 |
print(f"Error in image analysis: {str(e)}")
|
223 |
# Try to clean up memory in case of error
|
|
|
255 |
# Define the Gradio interface
|
256 |
def create_interface():
|
257 |
with gr.Blocks(title="Image Analysis with InternVL2") as demo:
|
258 |
+
gr.Markdown(f"# Image Analysis with {WHICH_MODEL}")
|
259 |
|
260 |
# System diagnostics
|
261 |
system_info = f"""
|
262 |
## System Diagnostics:
|
263 |
+
- Model Used: {WHICH_MODEL}
|
264 |
+
- Model Loaded: {MODEL_LOADED}
|
265 |
- PyTorch Version: {torch.__version__}
|
266 |
- CUDA Available: {torch.cuda.is_available()}
|
267 |
- GPU Working: {USE_GPU}
|
|
|
269 |
"""
|
270 |
|
271 |
gr.Markdown(system_info)
|
272 |
+
gr.Markdown(f"Upload an image to analyze it using the {WHICH_MODEL} model.")
|
273 |
|
274 |
# Show warnings based on system status
|
275 |
+
if not MODEL_LOADED:
|
276 |
+
gr.Markdown("⚠️ **WARNING**: No model could be loaded. This demo will not function correctly.", elem_classes=["warning-message"])
|
277 |
|
278 |
if not USE_GPU:
|
279 |
+
gr.Markdown("🚫 **ERROR**: NVIDIA GPU not detected. This application requires GPU acceleration.", elem_classes=["error-message"])
|
280 |
|
281 |
with gr.Row():
|
282 |
with gr.Column(scale=1):
|
|
|
288 |
)
|
289 |
submit_btn = gr.Button("Analyze Image")
|
290 |
|
291 |
+
# Disable button if GPU is not available or no model loaded
|
292 |
+
if not USE_GPU or not MODEL_LOADED:
|
293 |
submit_btn.interactive = False
|
294 |
|
295 |
with gr.Column(scale=2):
|
296 |
output_text = gr.Textbox(label="Analysis Result", lines=20)
|
297 |
if not USE_GPU:
|
298 |
+
output_text.value = f"""ERROR: NVIDIA GPU driver not detected. This application requires GPU acceleration.
|
299 |
|
300 |
Diagnostics:
|
301 |
+
- Model Used: {WHICH_MODEL}
|
302 |
- PyTorch Version: {torch.__version__}
|
303 |
- CUDA Available via PyTorch: {torch.cuda.is_available()}
|
304 |
- nvidia-smi Available: {nvidia_smi_available}
|
305 |
- GPU Working: {USE_GPU}
|
306 |
|
307 |
Please ensure this Space is using a GPU-enabled instance and that the GPU is correctly initialized."""
|
308 |
+
elif not MODEL_LOADED:
|
309 |
+
output_text.value = f"""ERROR: No model could be loaded.
|
310 |
+
|
311 |
+
Diagnostics:
|
312 |
+
- Model Used: {WHICH_MODEL}
|
313 |
+
- PyTorch Version: {torch.__version__}
|
314 |
+
- CUDA Available via PyTorch: {torch.cuda.is_available()}
|
315 |
+
- nvidia-smi Available: {nvidia_smi_available}
|
316 |
+
- GPU Working: {USE_GPU}
|
317 |
+
|
318 |
+
Please check the logs for more details."""
|
319 |
|
320 |
submit_btn.click(
|
321 |
fn=process_image,
|
|
|
342 |
|
343 |
If you're running this on Hugging Face Spaces, make sure to select a GPU-enabled hardware type.
|
344 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
346 |
return demo
|
347 |
|
|
|
350 |
# Create the Gradio interface
|
351 |
demo = create_interface()
|
352 |
|
353 |
+
# Launch the interface
|
354 |
demo.launch(share=False, server_name="0.0.0.0")
|