CropGuard / src /model /gradcam.py
mitraarka27's picture
πŸš€ Initial full clean push to Hugging Face
09823ea
# src/model/gradcam.py
import torch
import torch.nn.functional as F
import numpy as np
import cv2
class GradCAMPlusPlus:
def __init__(self, model, target_layer):
self.model = model
self.model.eval()
self.target_layer = target_layer
self.gradients = None
self.activations = None
# Hook to capture activations and gradients
target_layer.register_forward_hook(self._save_activations)
target_layer.register_full_backward_hook(self._save_gradients)
def _save_activations(self, module, input, output):
self.activations = output.detach()
def _save_gradients(self, module, grad_input, grad_output):
self.gradients = grad_output[0].detach()
def generate(self, input_tensor, class_idx=None):
# Forward pass
output = self.model(input_tensor)
if class_idx is None:
class_idx = output.argmax(dim=1).item()
# Zero gradients
self.model.zero_grad()
# Backward pass
loss = output[0, class_idx]
loss.backward(retain_graph=True)
# GradCAM++ calculation
grads = self.gradients # [batch, channels, height, width]
activations = self.activations
grads_power_2 = grads ** 2
grads_power_3 = grads ** 3
sum_grads = torch.sum(grads, dim=(2, 3), keepdim=True)
eps = 1e-8 # Avoid divide-by-zero
alpha_numer = grads_power_2
alpha_denom = 2 * grads_power_2 + sum_grads * grads_power_3
alpha_denom = torch.where(alpha_denom != 0.0, alpha_denom, torch.ones_like(alpha_denom))
alphas = alpha_numer / alpha_denom
weights = (alphas * F.relu(grads)).sum(dim=(2, 3), keepdim=True)
cam = (weights * activations).sum(dim=1).squeeze()
cam = F.relu(cam)
cam = cam.cpu().numpy()
cam = cv2.resize(cam, (input_tensor.shape[2], input_tensor.shape[3]))
cam = (cam - np.min(cam)) / (np.max(cam) - np.min(cam) + eps)
return cam