# src/model/gradcam.py import torch import torch.nn.functional as F import numpy as np import cv2 class GradCAMPlusPlus: def __init__(self, model, target_layer): self.model = model self.model.eval() self.target_layer = target_layer self.gradients = None self.activations = None # Hook to capture activations and gradients target_layer.register_forward_hook(self._save_activations) target_layer.register_full_backward_hook(self._save_gradients) def _save_activations(self, module, input, output): self.activations = output.detach() def _save_gradients(self, module, grad_input, grad_output): self.gradients = grad_output[0].detach() def generate(self, input_tensor, class_idx=None): # Forward pass output = self.model(input_tensor) if class_idx is None: class_idx = output.argmax(dim=1).item() # Zero gradients self.model.zero_grad() # Backward pass loss = output[0, class_idx] loss.backward(retain_graph=True) # GradCAM++ calculation grads = self.gradients # [batch, channels, height, width] activations = self.activations grads_power_2 = grads ** 2 grads_power_3 = grads ** 3 sum_grads = torch.sum(grads, dim=(2, 3), keepdim=True) eps = 1e-8 # Avoid divide-by-zero alpha_numer = grads_power_2 alpha_denom = 2 * grads_power_2 + sum_grads * grads_power_3 alpha_denom = torch.where(alpha_denom != 0.0, alpha_denom, torch.ones_like(alpha_denom)) alphas = alpha_numer / alpha_denom weights = (alphas * F.relu(grads)).sum(dim=(2, 3), keepdim=True) cam = (weights * activations).sum(dim=1).squeeze() cam = F.relu(cam) cam = cam.cpu().numpy() cam = cv2.resize(cam, (input_tensor.shape[2], input_tensor.shape[3])) cam = (cam - np.min(cam)) / (np.max(cam) - np.min(cam) + eps) return cam