Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,686 Bytes
5107cc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import torch
import torch.nn as nn
import math
from .MLP import trunc_normal_, DropPath, Mlp
import einops
import torch.utils.checkpoint
import torch.nn.functional as F
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
ATTENTION_MODE = 'flash'
else:
try:
import xformers
import xformers.ops
ATTENTION_MODE = 'xformers'
except:
ATTENTION_MODE = 'math'
print(f'attention mode is {ATTENTION_MODE}')
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def patchify(imgs, patch_size):
x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size)
return x
def unpatchify(x, in_chans):
patch_size = int((x.shape[2] // in_chans) ** 0.5)
h = w = int(x.shape[1] ** .5)
assert h * w == x.shape[1] and patch_size ** 2 * in_chans == x.shape[2]
x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h, p1=patch_size, p2=patch_size)
return x
def interpolate_pos_emb(pos_emb, old_shape, new_shape):
pos_emb = einops.rearrange(pos_emb, 'B (H W) C -> B C H W', H=old_shape[0], W=old_shape[1])
pos_emb = F.interpolate(pos_emb, new_shape, mode='bilinear')
pos_emb = einops.rearrange(pos_emb, 'B C H W -> B (H W) C')
return pos_emb
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, L, C = x.shape
qkv = self.qkv(x)
if ATTENTION_MODE == 'flash':
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads).float()
q, k, v = qkv[0], qkv[1], qkv[2] # B H L D
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = einops.rearrange(x, 'B H L D -> B L (H D)')
elif ATTENTION_MODE == 'xformers':
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads)
q, k, v = qkv[0], qkv[1], qkv[2] # B L H D
x = xformers.ops.memory_efficient_attention(q, k, v)
x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads)
elif ATTENTION_MODE == 'math':
with torch.amp.autocast(device_type='cuda', enabled=False):
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads).float()
q, k, v = qkv[0], qkv[1], qkv[2] # B H L D
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, L, C)
else:
raise NotImplemented
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False):
super().__init__()
self.norm1 = norm_layer(dim) if skip else None
self.norm2 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm3 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.skip_linear = nn.Linear(2 * dim, dim) if skip else None
self.use_checkpoint = use_checkpoint
def forward(self, x, skip=None):
if self.use_checkpoint:
return torch.utils.checkpoint.checkpoint(self._forward, x, skip)
else:
return self._forward(x, skip)
def _forward(self, x, skip=None):
if self.skip_linear is not None:
x = self.skip_linear(torch.cat([x, skip], dim=-1))
x = self.norm1(x)
x = x + self.drop_path(self.attn(x))
x = self.norm2(x)
x = x + self.drop_path(self.mlp(x))
x = self.norm3(x)
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, patch_size, in_chans=3, embed_dim=768):
super().__init__()
self.patch_size = patch_size
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
assert H % self.patch_size == 0 and W % self.patch_size == 0
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class Triffuser(nn.Module):
def __init__(self,
img_size=32, # Assuming latent diffusion
in_chans=4, # Assuming latent diffusion
num_modalities=4,
patch_size=2,
embed_dim=1024,
depth=20,
num_heads=16,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
pos_drop_rate=0.,
drop_rate=0.,
attn_drop_rate=0.,
norm_layer=nn.LayerNorm,
mlp_time_embed=False,
use_checkpoint=False,
# text_dim=None,
# num_text_tokens=None,
clip_img_dim=None # All modalities with the same clip dimension
):
super().__init__()
self.in_chans = in_chans
self.patch_size = patch_size
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_modalities = num_modalities
if num_modalities is None:
raise ValueError("num_modalities must be provided")
self.patch_embeds = nn.ModuleList([PatchEmbed(patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) for _ in range(num_modalities)])
self.img_size = (img_size, img_size) if isinstance(img_size, int) else img_size # the default img size
assert self.img_size[0] % patch_size == 0 and self.img_size[1] % patch_size == 0
self.num_patches = (self.img_size[0] // patch_size) * (self.img_size[1] // patch_size)
self.time_img_embeds = nn.ModuleList([nn.Sequential(
nn.Linear(embed_dim, 4 * embed_dim),
nn.SiLU(),
nn.Linear(4 * embed_dim, embed_dim),
) if mlp_time_embed else nn.Identity() for _ in range(num_modalities)])
# self.text_embed = nn.Linear(text_dim, embed_dim)
# self.text_out = nn.Linear(embed_dim, text_dim)
# TODO: We skip clip embedding for now
# self.clip_img_embed = nn.Linear(clip_img_dim, embed_dim)
# self.clip_img_out = nn.Linear(embed_dim, clip_img_dim)
# self.num_text_tokens = num_text_tokens
# TODO: ATM we assume the same num_patches for all modalities
# 1 for time embedding token of each modality
# num_patches for each modality (assuming the same number of patches for all modalities)
self.num_tokens = 1 * self.num_modalities + self.num_patches * self.num_modalities
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_tokens, embed_dim))
self.pos_drop = nn.Dropout(p=pos_drop_rate)
self.in_blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, use_checkpoint=use_checkpoint)
for _ in range(depth // 2)])
self.mid_block = Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, use_checkpoint=use_checkpoint)
self.out_blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, skip=True, use_checkpoint=use_checkpoint)
for _ in range(depth // 2)])
self.norm = norm_layer(embed_dim)
self.patch_dim = patch_size ** 2 * in_chans
self.decoder_preds = nn.ModuleList([nn.Linear(embed_dim, self.patch_dim, bias=True) for _ in range(num_modalities)])
trunc_normal_(self.pos_embed, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed'}
def forward(self, imgs, t_imgs):
assert len(imgs) == len(t_imgs) == self.num_modalities
# TODO: We are still assuming all images have the same shape
_, _, H, W = imgs[0].shape
imgs = [self.patch_embeds[i](img) for i, img in enumerate(imgs)]
t_imgs_token = [self.time_img_embeds[i](timestep_embedding(t_img, self.embed_dim)) for i, t_img in enumerate(t_imgs)]
t_imgs_token = [t_img_token.unsqueeze(dim=1) for t_img_token in t_imgs_token]
# text = self.text_embed(text)
# clip_img = self.clip_img_embed(clip_img)
x = torch.cat((*t_imgs_token, *imgs), dim=1)
num_img_tokens = [img.size(1) for img in imgs] # Each image might have different number of tokens
num_t_tokens = [1] * self.num_modalities # There is only one time token for each modality
# TODO: ATM assume all modality images have the same shape
if H == self.img_size[0] and W == self.img_size[1]:
pos_embed = self.pos_embed
else: # interpolate the positional embedding when the input image is not of the default shape
raise NotImplementedError("Why are we here? Images are not of the default shape. Interpolate positional embedding.")
pos_embed_others, pos_embed_patches = torch.split(self.pos_embed, [1 + 1 + num_text_tokens + 1, self.num_patches], dim=1)
pos_embed_patches = interpolate_pos_emb(pos_embed_patches, (self.img_size[0] // self.patch_size, self.img_size[1] // self.patch_size),
(H // self.patch_size, W // self.patch_size))
pos_embed = torch.cat((pos_embed_others, pos_embed_patches), dim=1)
x = x + pos_embed
x = self.pos_drop(x)
skips = []
for blk in self.in_blocks:
x = blk(x)
skips.append(x)
x = self.mid_block(x)
for blk in self.out_blocks:
x = blk(x, skips.pop())
x = self.norm(x)
all_t_imgs = x.split((*num_t_tokens, *num_img_tokens), dim=1)
t_imgs_token_out = all_t_imgs[:self.num_modalities]
imgs_out = all_t_imgs[self.num_modalities:]
imgs_out = [self.decoder_preds[i](img_out) for i, img_out in enumerate(imgs_out)]
imgs_out = [unpatchify(img_out, self.in_chans) for img_out in imgs_out]
# clip_img_out = self.clip_img_out(clip_img_out)
# text_out = self.text_out(text_out)
return imgs_out |