File size: 12,686 Bytes
5107cc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import torch
import torch.nn as nn
import math
from .MLP import trunc_normal_, DropPath, Mlp
import einops
import torch.utils.checkpoint
import torch.nn.functional as F

if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
    ATTENTION_MODE = 'flash'
else:
    try:
        import xformers
        import xformers.ops
        ATTENTION_MODE = 'xformers'
    except:
        ATTENTION_MODE = 'math'
print(f'attention mode is {ATTENTION_MODE}')


def timestep_embedding(timesteps, dim, max_period=10000):
    """
    Create sinusoidal timestep embeddings.

    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an [N x dim] Tensor of positional embeddings.
    """
    half = dim // 2
    freqs = torch.exp(
        -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
    ).to(device=timesteps.device)
    args = timesteps[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    return embedding


def patchify(imgs, patch_size):
    x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size)
    return x


def unpatchify(x, in_chans):
    patch_size = int((x.shape[2] // in_chans) ** 0.5)
    h = w = int(x.shape[1] ** .5)
    assert h * w == x.shape[1] and patch_size ** 2 * in_chans == x.shape[2]
    x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h, p1=patch_size, p2=patch_size)
    return x


def interpolate_pos_emb(pos_emb, old_shape, new_shape):
    pos_emb = einops.rearrange(pos_emb, 'B (H W) C -> B C H W', H=old_shape[0], W=old_shape[1])
    pos_emb = F.interpolate(pos_emb, new_shape, mode='bilinear')
    pos_emb = einops.rearrange(pos_emb, 'B C H W -> B (H W) C')
    return pos_emb


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, L, C = x.shape

        qkv = self.qkv(x)
        if ATTENTION_MODE == 'flash':
            qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads).float()
            q, k, v = qkv[0], qkv[1], qkv[2]  # B H L D
            x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
            x = einops.rearrange(x, 'B H L D -> B L (H D)')
        elif ATTENTION_MODE == 'xformers':
            qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads)
            q, k, v = qkv[0], qkv[1], qkv[2]  # B L H D
            x = xformers.ops.memory_efficient_attention(q, k, v)
            x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads)
        elif ATTENTION_MODE == 'math':
            with torch.amp.autocast(device_type='cuda', enabled=False):
                qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads).float()
                q, k, v = qkv[0], qkv[1], qkv[2]  # B H L D
                attn = (q @ k.transpose(-2, -1)) * self.scale
                attn = attn.softmax(dim=-1)
                attn = self.attn_drop(attn)
                x = (attn @ v).transpose(1, 2).reshape(B, L, C)
        else:
            raise NotImplemented

        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False):
        super().__init__()
        self.norm1 = norm_layer(dim) if skip else None
        self.norm2 = norm_layer(dim)

        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm3 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.skip_linear = nn.Linear(2 * dim, dim) if skip else None
        self.use_checkpoint = use_checkpoint

    def forward(self, x, skip=None):
        if self.use_checkpoint:
            return torch.utils.checkpoint.checkpoint(self._forward, x, skip)
        else:
            return self._forward(x, skip)

    def _forward(self, x, skip=None):
        if self.skip_linear is not None:
            x = self.skip_linear(torch.cat([x, skip], dim=-1))
            x = self.norm1(x)
        x = x + self.drop_path(self.attn(x))
        x = self.norm2(x)

        x = x + self.drop_path(self.mlp(x))
        x = self.norm3(x)

        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
    def __init__(self, patch_size, in_chans=3, embed_dim=768):
        super().__init__()
        self.patch_size = patch_size
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        B, C, H, W = x.shape
        assert H % self.patch_size == 0 and W % self.patch_size == 0
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x

class Triffuser(nn.Module):
    def __init__(self,
                 img_size=32, # Assuming latent diffusion
                 in_chans=4, # Assuming latent diffusion                 
                 num_modalities=4,
                 patch_size=2,
                 embed_dim=1024,
                 depth=20,
                 num_heads=16,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 pos_drop_rate=0.,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 norm_layer=nn.LayerNorm,
                 mlp_time_embed=False,
                 use_checkpoint=False,
                 # text_dim=None,
                 # num_text_tokens=None,
                 clip_img_dim=None # All modalities with the same clip dimension
                 ):
        super().__init__()
        self.in_chans = in_chans
        self.patch_size = patch_size
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.num_modalities = num_modalities
        if num_modalities is None:
            raise ValueError("num_modalities must be provided")
        
        self.patch_embeds = nn.ModuleList([PatchEmbed(patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) for _ in range(num_modalities)])
        self.img_size = (img_size, img_size) if isinstance(img_size, int) else img_size  # the default img size
        assert self.img_size[0] % patch_size == 0 and self.img_size[1] % patch_size == 0
        self.num_patches = (self.img_size[0] // patch_size) * (self.img_size[1] // patch_size)

        self.time_img_embeds = nn.ModuleList([nn.Sequential(
            nn.Linear(embed_dim, 4 * embed_dim),
            nn.SiLU(),
            nn.Linear(4 * embed_dim, embed_dim),
        ) if mlp_time_embed else nn.Identity() for _ in range(num_modalities)])

        # self.text_embed = nn.Linear(text_dim, embed_dim)
        # self.text_out = nn.Linear(embed_dim, text_dim)

        # TODO: We skip clip embedding for now
        # self.clip_img_embed = nn.Linear(clip_img_dim, embed_dim)
        # self.clip_img_out = nn.Linear(embed_dim, clip_img_dim)

        # self.num_text_tokens = num_text_tokens
        # TODO: ATM we assume the same num_patches for all modalities
        # 1 for time embedding token of each modality
        # num_patches for each modality (assuming the same number of patches for all modalities)
        self.num_tokens = 1 * self.num_modalities + self.num_patches * self.num_modalities

        self.pos_embed = nn.Parameter(torch.zeros(1, self.num_tokens, embed_dim))
        self.pos_drop = nn.Dropout(p=pos_drop_rate)

        self.in_blocks = nn.ModuleList([
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, use_checkpoint=use_checkpoint)
            for _ in range(depth // 2)])

        self.mid_block = Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, use_checkpoint=use_checkpoint)

        self.out_blocks = nn.ModuleList([
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, skip=True, use_checkpoint=use_checkpoint)
            for _ in range(depth // 2)])

        self.norm = norm_layer(embed_dim)
        self.patch_dim = patch_size ** 2 * in_chans
        self.decoder_preds = nn.ModuleList([nn.Linear(embed_dim, self.patch_dim, bias=True) for _ in range(num_modalities)])

        trunc_normal_(self.pos_embed, std=.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed'}

    def forward(self, imgs, t_imgs):
        
        assert len(imgs) == len(t_imgs) == self.num_modalities
        
        # TODO: We are still assuming all images have the same shape
        _, _, H, W = imgs[0].shape
        
        imgs = [self.patch_embeds[i](img) for i, img in enumerate(imgs)]
        
        t_imgs_token = [self.time_img_embeds[i](timestep_embedding(t_img, self.embed_dim)) for i, t_img in enumerate(t_imgs)]
        t_imgs_token = [t_img_token.unsqueeze(dim=1) for t_img_token in t_imgs_token]
        
        # text = self.text_embed(text)
        # clip_img = self.clip_img_embed(clip_img)
        x = torch.cat((*t_imgs_token, *imgs), dim=1)
        
        num_img_tokens = [img.size(1) for img in imgs] # Each image might have different number of tokens
        num_t_tokens = [1] * self.num_modalities # There is only one time token for each modality
        
        # TODO: ATM assume all modality images have the same shape
        if H == self.img_size[0] and W == self.img_size[1]:
            pos_embed = self.pos_embed
        else:  # interpolate the positional embedding when the input image is not of the default shape
            raise NotImplementedError("Why are we here? Images are not of the default shape. Interpolate positional embedding.")
            pos_embed_others, pos_embed_patches = torch.split(self.pos_embed, [1 + 1 + num_text_tokens + 1, self.num_patches], dim=1)
            pos_embed_patches = interpolate_pos_emb(pos_embed_patches, (self.img_size[0] // self.patch_size, self.img_size[1] // self.patch_size),
                                                    (H // self.patch_size, W // self.patch_size))
            pos_embed = torch.cat((pos_embed_others, pos_embed_patches), dim=1)

        x = x + pos_embed
        x = self.pos_drop(x)

        skips = []
        for blk in self.in_blocks:
            x = blk(x)
            skips.append(x)

        x = self.mid_block(x)

        for blk in self.out_blocks:
            x = blk(x, skips.pop())

        x = self.norm(x)

        all_t_imgs = x.split((*num_t_tokens, *num_img_tokens), dim=1)
        
        t_imgs_token_out = all_t_imgs[:self.num_modalities]
        imgs_out = all_t_imgs[self.num_modalities:]

        imgs_out = [self.decoder_preds[i](img_out) for i, img_out in enumerate(imgs_out)]
        imgs_out = [unpatchify(img_out, self.in_chans) for img_out in imgs_out]

        # clip_img_out = self.clip_img_out(clip_img_out)
        # text_out = self.text_out(text_out)
        
        return imgs_out