Spaces:
Running
on
Zero
Running
on
Zero
mikonvergence
commited on
Commit
·
5107cc3
1
Parent(s):
dfc9360
triffuser definition
Browse files- src/MLP.py +111 -0
- src/Triffuser.py +302 -0
src/MLP.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# code from timm 0.3.2
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import math
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
8 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
9 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
10 |
+
def norm_cdf(x):
|
11 |
+
# Computes standard normal cumulative distribution function
|
12 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
13 |
+
|
14 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
15 |
+
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
16 |
+
"The distribution of values may be incorrect.",
|
17 |
+
stacklevel=2)
|
18 |
+
|
19 |
+
with torch.no_grad():
|
20 |
+
# Values are generated by using a truncated uniform distribution and
|
21 |
+
# then using the inverse CDF for the normal distribution.
|
22 |
+
# Get upper and lower cdf values
|
23 |
+
l = norm_cdf((a - mean) / std)
|
24 |
+
u = norm_cdf((b - mean) / std)
|
25 |
+
|
26 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
27 |
+
# [2l-1, 2u-1].
|
28 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
29 |
+
|
30 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
31 |
+
# standard normal
|
32 |
+
tensor.erfinv_()
|
33 |
+
|
34 |
+
# Transform to proper mean, std
|
35 |
+
tensor.mul_(std * math.sqrt(2.))
|
36 |
+
tensor.add_(mean)
|
37 |
+
|
38 |
+
# Clamp to ensure it's in the proper range
|
39 |
+
tensor.clamp_(min=a, max=b)
|
40 |
+
return tensor
|
41 |
+
|
42 |
+
|
43 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
44 |
+
# type: (Tensor, float, float, float, float) -> Tensor
|
45 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
46 |
+
normal distribution. The values are effectively drawn from the
|
47 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
48 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
49 |
+
the bounds. The method used for generating the random values works
|
50 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
51 |
+
Args:
|
52 |
+
tensor: an n-dimensional `torch.Tensor`
|
53 |
+
mean: the mean of the normal distribution
|
54 |
+
std: the standard deviation of the normal distribution
|
55 |
+
a: the minimum cutoff value
|
56 |
+
b: the maximum cutoff value
|
57 |
+
Examples:
|
58 |
+
>>> w = torch.empty(3, 5)
|
59 |
+
>>> nn.init.trunc_normal_(w)
|
60 |
+
"""
|
61 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
62 |
+
|
63 |
+
|
64 |
+
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
65 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
66 |
+
|
67 |
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
68 |
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
69 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
70 |
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
71 |
+
'survival rate' as the argument.
|
72 |
+
|
73 |
+
"""
|
74 |
+
if drop_prob == 0. or not training:
|
75 |
+
return x
|
76 |
+
keep_prob = 1 - drop_prob
|
77 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
78 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
79 |
+
random_tensor.floor_() # binarize
|
80 |
+
output = x.div(keep_prob) * random_tensor
|
81 |
+
return output
|
82 |
+
|
83 |
+
|
84 |
+
class DropPath(nn.Module):
|
85 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
86 |
+
"""
|
87 |
+
def __init__(self, drop_prob=None):
|
88 |
+
super(DropPath, self).__init__()
|
89 |
+
self.drop_prob = drop_prob
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
return drop_path(x, self.drop_prob, self.training)
|
93 |
+
|
94 |
+
|
95 |
+
class Mlp(nn.Module):
|
96 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
97 |
+
super().__init__()
|
98 |
+
out_features = out_features or in_features
|
99 |
+
hidden_features = hidden_features or in_features
|
100 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
101 |
+
self.act = act_layer()
|
102 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
103 |
+
self.drop = nn.Dropout(drop)
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
x = self.fc1(x)
|
107 |
+
x = self.act(x)
|
108 |
+
x = self.drop(x)
|
109 |
+
x = self.fc2(x)
|
110 |
+
x = self.drop(x)
|
111 |
+
return x
|
src/Triffuser.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import math
|
4 |
+
from .MLP import trunc_normal_, DropPath, Mlp
|
5 |
+
import einops
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
|
10 |
+
ATTENTION_MODE = 'flash'
|
11 |
+
else:
|
12 |
+
try:
|
13 |
+
import xformers
|
14 |
+
import xformers.ops
|
15 |
+
ATTENTION_MODE = 'xformers'
|
16 |
+
except:
|
17 |
+
ATTENTION_MODE = 'math'
|
18 |
+
print(f'attention mode is {ATTENTION_MODE}')
|
19 |
+
|
20 |
+
|
21 |
+
def timestep_embedding(timesteps, dim, max_period=10000):
|
22 |
+
"""
|
23 |
+
Create sinusoidal timestep embeddings.
|
24 |
+
|
25 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
26 |
+
These may be fractional.
|
27 |
+
:param dim: the dimension of the output.
|
28 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
29 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
30 |
+
"""
|
31 |
+
half = dim // 2
|
32 |
+
freqs = torch.exp(
|
33 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
34 |
+
).to(device=timesteps.device)
|
35 |
+
args = timesteps[:, None].float() * freqs[None]
|
36 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
37 |
+
if dim % 2:
|
38 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
39 |
+
return embedding
|
40 |
+
|
41 |
+
|
42 |
+
def patchify(imgs, patch_size):
|
43 |
+
x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size)
|
44 |
+
return x
|
45 |
+
|
46 |
+
|
47 |
+
def unpatchify(x, in_chans):
|
48 |
+
patch_size = int((x.shape[2] // in_chans) ** 0.5)
|
49 |
+
h = w = int(x.shape[1] ** .5)
|
50 |
+
assert h * w == x.shape[1] and patch_size ** 2 * in_chans == x.shape[2]
|
51 |
+
x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h, p1=patch_size, p2=patch_size)
|
52 |
+
return x
|
53 |
+
|
54 |
+
|
55 |
+
def interpolate_pos_emb(pos_emb, old_shape, new_shape):
|
56 |
+
pos_emb = einops.rearrange(pos_emb, 'B (H W) C -> B C H W', H=old_shape[0], W=old_shape[1])
|
57 |
+
pos_emb = F.interpolate(pos_emb, new_shape, mode='bilinear')
|
58 |
+
pos_emb = einops.rearrange(pos_emb, 'B C H W -> B (H W) C')
|
59 |
+
return pos_emb
|
60 |
+
|
61 |
+
|
62 |
+
class Attention(nn.Module):
|
63 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
64 |
+
super().__init__()
|
65 |
+
self.num_heads = num_heads
|
66 |
+
head_dim = dim // num_heads
|
67 |
+
self.scale = qk_scale or head_dim ** -0.5
|
68 |
+
|
69 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
70 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
71 |
+
self.proj = nn.Linear(dim, dim)
|
72 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
73 |
+
|
74 |
+
def forward(self, x):
|
75 |
+
B, L, C = x.shape
|
76 |
+
|
77 |
+
qkv = self.qkv(x)
|
78 |
+
if ATTENTION_MODE == 'flash':
|
79 |
+
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads).float()
|
80 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # B H L D
|
81 |
+
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
82 |
+
x = einops.rearrange(x, 'B H L D -> B L (H D)')
|
83 |
+
elif ATTENTION_MODE == 'xformers':
|
84 |
+
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads)
|
85 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # B L H D
|
86 |
+
x = xformers.ops.memory_efficient_attention(q, k, v)
|
87 |
+
x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads)
|
88 |
+
elif ATTENTION_MODE == 'math':
|
89 |
+
with torch.amp.autocast(device_type='cuda', enabled=False):
|
90 |
+
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads).float()
|
91 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # B H L D
|
92 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
93 |
+
attn = attn.softmax(dim=-1)
|
94 |
+
attn = self.attn_drop(attn)
|
95 |
+
x = (attn @ v).transpose(1, 2).reshape(B, L, C)
|
96 |
+
else:
|
97 |
+
raise NotImplemented
|
98 |
+
|
99 |
+
x = self.proj(x)
|
100 |
+
x = self.proj_drop(x)
|
101 |
+
return x
|
102 |
+
|
103 |
+
|
104 |
+
class Block(nn.Module):
|
105 |
+
|
106 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
107 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False):
|
108 |
+
super().__init__()
|
109 |
+
self.norm1 = norm_layer(dim) if skip else None
|
110 |
+
self.norm2 = norm_layer(dim)
|
111 |
+
|
112 |
+
self.attn = Attention(
|
113 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
114 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
115 |
+
self.norm3 = norm_layer(dim)
|
116 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
117 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
118 |
+
self.skip_linear = nn.Linear(2 * dim, dim) if skip else None
|
119 |
+
self.use_checkpoint = use_checkpoint
|
120 |
+
|
121 |
+
def forward(self, x, skip=None):
|
122 |
+
if self.use_checkpoint:
|
123 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, skip)
|
124 |
+
else:
|
125 |
+
return self._forward(x, skip)
|
126 |
+
|
127 |
+
def _forward(self, x, skip=None):
|
128 |
+
if self.skip_linear is not None:
|
129 |
+
x = self.skip_linear(torch.cat([x, skip], dim=-1))
|
130 |
+
x = self.norm1(x)
|
131 |
+
x = x + self.drop_path(self.attn(x))
|
132 |
+
x = self.norm2(x)
|
133 |
+
|
134 |
+
x = x + self.drop_path(self.mlp(x))
|
135 |
+
x = self.norm3(x)
|
136 |
+
|
137 |
+
return x
|
138 |
+
|
139 |
+
|
140 |
+
class PatchEmbed(nn.Module):
|
141 |
+
""" Image to Patch Embedding
|
142 |
+
"""
|
143 |
+
def __init__(self, patch_size, in_chans=3, embed_dim=768):
|
144 |
+
super().__init__()
|
145 |
+
self.patch_size = patch_size
|
146 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
147 |
+
|
148 |
+
def forward(self, x):
|
149 |
+
B, C, H, W = x.shape
|
150 |
+
assert H % self.patch_size == 0 and W % self.patch_size == 0
|
151 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
152 |
+
return x
|
153 |
+
|
154 |
+
class Triffuser(nn.Module):
|
155 |
+
def __init__(self,
|
156 |
+
img_size=32, # Assuming latent diffusion
|
157 |
+
in_chans=4, # Assuming latent diffusion
|
158 |
+
num_modalities=4,
|
159 |
+
patch_size=2,
|
160 |
+
embed_dim=1024,
|
161 |
+
depth=20,
|
162 |
+
num_heads=16,
|
163 |
+
mlp_ratio=4.,
|
164 |
+
qkv_bias=False,
|
165 |
+
qk_scale=None,
|
166 |
+
pos_drop_rate=0.,
|
167 |
+
drop_rate=0.,
|
168 |
+
attn_drop_rate=0.,
|
169 |
+
norm_layer=nn.LayerNorm,
|
170 |
+
mlp_time_embed=False,
|
171 |
+
use_checkpoint=False,
|
172 |
+
# text_dim=None,
|
173 |
+
# num_text_tokens=None,
|
174 |
+
clip_img_dim=None # All modalities with the same clip dimension
|
175 |
+
):
|
176 |
+
super().__init__()
|
177 |
+
self.in_chans = in_chans
|
178 |
+
self.patch_size = patch_size
|
179 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
180 |
+
self.num_modalities = num_modalities
|
181 |
+
if num_modalities is None:
|
182 |
+
raise ValueError("num_modalities must be provided")
|
183 |
+
|
184 |
+
self.patch_embeds = nn.ModuleList([PatchEmbed(patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) for _ in range(num_modalities)])
|
185 |
+
self.img_size = (img_size, img_size) if isinstance(img_size, int) else img_size # the default img size
|
186 |
+
assert self.img_size[0] % patch_size == 0 and self.img_size[1] % patch_size == 0
|
187 |
+
self.num_patches = (self.img_size[0] // patch_size) * (self.img_size[1] // patch_size)
|
188 |
+
|
189 |
+
self.time_img_embeds = nn.ModuleList([nn.Sequential(
|
190 |
+
nn.Linear(embed_dim, 4 * embed_dim),
|
191 |
+
nn.SiLU(),
|
192 |
+
nn.Linear(4 * embed_dim, embed_dim),
|
193 |
+
) if mlp_time_embed else nn.Identity() for _ in range(num_modalities)])
|
194 |
+
|
195 |
+
# self.text_embed = nn.Linear(text_dim, embed_dim)
|
196 |
+
# self.text_out = nn.Linear(embed_dim, text_dim)
|
197 |
+
|
198 |
+
# TODO: We skip clip embedding for now
|
199 |
+
# self.clip_img_embed = nn.Linear(clip_img_dim, embed_dim)
|
200 |
+
# self.clip_img_out = nn.Linear(embed_dim, clip_img_dim)
|
201 |
+
|
202 |
+
# self.num_text_tokens = num_text_tokens
|
203 |
+
# TODO: ATM we assume the same num_patches for all modalities
|
204 |
+
# 1 for time embedding token of each modality
|
205 |
+
# num_patches for each modality (assuming the same number of patches for all modalities)
|
206 |
+
self.num_tokens = 1 * self.num_modalities + self.num_patches * self.num_modalities
|
207 |
+
|
208 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_tokens, embed_dim))
|
209 |
+
self.pos_drop = nn.Dropout(p=pos_drop_rate)
|
210 |
+
|
211 |
+
self.in_blocks = nn.ModuleList([
|
212 |
+
Block(
|
213 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
214 |
+
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, use_checkpoint=use_checkpoint)
|
215 |
+
for _ in range(depth // 2)])
|
216 |
+
|
217 |
+
self.mid_block = Block(
|
218 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
219 |
+
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, use_checkpoint=use_checkpoint)
|
220 |
+
|
221 |
+
self.out_blocks = nn.ModuleList([
|
222 |
+
Block(
|
223 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
224 |
+
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, skip=True, use_checkpoint=use_checkpoint)
|
225 |
+
for _ in range(depth // 2)])
|
226 |
+
|
227 |
+
self.norm = norm_layer(embed_dim)
|
228 |
+
self.patch_dim = patch_size ** 2 * in_chans
|
229 |
+
self.decoder_preds = nn.ModuleList([nn.Linear(embed_dim, self.patch_dim, bias=True) for _ in range(num_modalities)])
|
230 |
+
|
231 |
+
trunc_normal_(self.pos_embed, std=.02)
|
232 |
+
self.apply(self._init_weights)
|
233 |
+
|
234 |
+
def _init_weights(self, m):
|
235 |
+
if isinstance(m, nn.Linear):
|
236 |
+
trunc_normal_(m.weight, std=.02)
|
237 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
238 |
+
nn.init.constant_(m.bias, 0)
|
239 |
+
elif isinstance(m, nn.LayerNorm):
|
240 |
+
nn.init.constant_(m.bias, 0)
|
241 |
+
nn.init.constant_(m.weight, 1.0)
|
242 |
+
|
243 |
+
@torch.jit.ignore
|
244 |
+
def no_weight_decay(self):
|
245 |
+
return {'pos_embed'}
|
246 |
+
|
247 |
+
def forward(self, imgs, t_imgs):
|
248 |
+
|
249 |
+
assert len(imgs) == len(t_imgs) == self.num_modalities
|
250 |
+
|
251 |
+
# TODO: We are still assuming all images have the same shape
|
252 |
+
_, _, H, W = imgs[0].shape
|
253 |
+
|
254 |
+
imgs = [self.patch_embeds[i](img) for i, img in enumerate(imgs)]
|
255 |
+
|
256 |
+
t_imgs_token = [self.time_img_embeds[i](timestep_embedding(t_img, self.embed_dim)) for i, t_img in enumerate(t_imgs)]
|
257 |
+
t_imgs_token = [t_img_token.unsqueeze(dim=1) for t_img_token in t_imgs_token]
|
258 |
+
|
259 |
+
# text = self.text_embed(text)
|
260 |
+
# clip_img = self.clip_img_embed(clip_img)
|
261 |
+
x = torch.cat((*t_imgs_token, *imgs), dim=1)
|
262 |
+
|
263 |
+
num_img_tokens = [img.size(1) for img in imgs] # Each image might have different number of tokens
|
264 |
+
num_t_tokens = [1] * self.num_modalities # There is only one time token for each modality
|
265 |
+
|
266 |
+
# TODO: ATM assume all modality images have the same shape
|
267 |
+
if H == self.img_size[0] and W == self.img_size[1]:
|
268 |
+
pos_embed = self.pos_embed
|
269 |
+
else: # interpolate the positional embedding when the input image is not of the default shape
|
270 |
+
raise NotImplementedError("Why are we here? Images are not of the default shape. Interpolate positional embedding.")
|
271 |
+
pos_embed_others, pos_embed_patches = torch.split(self.pos_embed, [1 + 1 + num_text_tokens + 1, self.num_patches], dim=1)
|
272 |
+
pos_embed_patches = interpolate_pos_emb(pos_embed_patches, (self.img_size[0] // self.patch_size, self.img_size[1] // self.patch_size),
|
273 |
+
(H // self.patch_size, W // self.patch_size))
|
274 |
+
pos_embed = torch.cat((pos_embed_others, pos_embed_patches), dim=1)
|
275 |
+
|
276 |
+
x = x + pos_embed
|
277 |
+
x = self.pos_drop(x)
|
278 |
+
|
279 |
+
skips = []
|
280 |
+
for blk in self.in_blocks:
|
281 |
+
x = blk(x)
|
282 |
+
skips.append(x)
|
283 |
+
|
284 |
+
x = self.mid_block(x)
|
285 |
+
|
286 |
+
for blk in self.out_blocks:
|
287 |
+
x = blk(x, skips.pop())
|
288 |
+
|
289 |
+
x = self.norm(x)
|
290 |
+
|
291 |
+
all_t_imgs = x.split((*num_t_tokens, *num_img_tokens), dim=1)
|
292 |
+
|
293 |
+
t_imgs_token_out = all_t_imgs[:self.num_modalities]
|
294 |
+
imgs_out = all_t_imgs[self.num_modalities:]
|
295 |
+
|
296 |
+
imgs_out = [self.decoder_preds[i](img_out) for i, img_out in enumerate(imgs_out)]
|
297 |
+
imgs_out = [unpatchify(img_out, self.in_chans) for img_out in imgs_out]
|
298 |
+
|
299 |
+
# clip_img_out = self.clip_img_out(clip_img_out)
|
300 |
+
# text_out = self.text_out(text_out)
|
301 |
+
|
302 |
+
return imgs_out
|