Spaces:
Sleeping
Sleeping
File size: 2,324 Bytes
f9706ce 6a2d159 f9278f9 f9706ce f9278f9 a875def f9278f9 a875def f9278f9 95f5e4b 470c325 9afe62f f9278f9 9afe62f f9278f9 ff4ab6e 9afe62f f9278f9 ff4ab6e a2d03db f9278f9 f9706ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
import nltk
from nltk.sentiment.vader import SentimentIntensityAnalyzer
from transformers import pipeline
def greet(name):
return "Hello " + name + "!!"
def classify(text):
return {"cat": 0.3, "dog": 0.7}
def predict_sentiment(text, model):
if model == "finiteautomata/bertweet-base-sentiment-analysis":
# pipe = pipeline("text-classification", model="finiteautomata/bertweet-base-sentiment-analysis")
# out = pipe(text, return_all_scores=True)
# return {pred["label"]: pred["score"] for pred in out[0]}
return {"cathf": 0.3, "doghf": 0.7}
elif model == "vader":
# nltk.download('vader_lexicon')
# sia = SentimentIntensityAnalyzer()
# return sia.polarity_scores(text)
return {"catv": 0.3, "dogv": 0.7}
demo = gr.Blocks()
with demo:
gr.Markdown("A bunch of different Gradio demos in tabs.\n\nNote that generally, the code that is in each tab could be its own Gradio application!")
with gr.Tabs():
with gr.TabItem("Basic Hello"):
gr.Markdown('The most basic "Hello World"-type demo you can write')
interface = gr.Interface(fn=greet, inputs="text", outputs="text")
with gr.TabItem("Label Output"):
gr.Markdown("An example of a basic interface with a classification label as output")
interface = gr.Interface(fn=classify, inputs="text", outputs="label")
with gr.TabItem("Multiple Inputs"):
gr.Markdown("A more complex interface for sentiment analysis with multiple inputs, including a dropdown, and some examples")
demo = gr.Interface(
fn=predict_sentiment,
inputs=[
gr.Textbox(placeholder="Your text input"),
gr.Dropdown(
["finiteautomata/bertweet-base-sentiment-analysis", "vader"], label="Model"
),
],
outputs="label",
examples=[
["Happy smile", "vader"],
["Happy smile", "finiteautomata/bertweet-base-sentiment-analysis"],
["Sad frown", "vader"],
["Sad frown", "finiteautomata/bertweet-base-sentiment-analysis"],
]
)
demo.launch()
|