Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,55 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
def greet(name):
|
4 |
return "Hello " + name + "!!"
|
5 |
|
6 |
-
def
|
7 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
demo = gr.Blocks()
|
10 |
|
11 |
with demo:
|
12 |
-
gr.Markdown("
|
13 |
with gr.Tabs():
|
14 |
-
|
15 |
-
|
16 |
-
text_input = gr.Textbox()
|
17 |
-
text_output = gr.Textbox()
|
18 |
-
text_button = gr.Button("Flip")
|
19 |
-
with gr.TabItem("Flip Image"):
|
20 |
interface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
text_button.click(flip_text, inputs=text_input, outputs=text_output)
|
23 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
3 |
+
from transformers import pipeline
|
4 |
|
5 |
def greet(name):
|
6 |
return "Hello " + name + "!!"
|
7 |
|
8 |
+
def classify(text):
|
9 |
+
return {"cat": 0.3, "dog": 0.7}
|
10 |
+
|
11 |
+
def predict_sentiment(text, model):
|
12 |
+
if model == "finiteautomata/bertweet-base-sentiment-analysis":
|
13 |
+
pipe = pipeline("text-classification", model="finiteautomata/bertweet-base-sentiment-analysis")
|
14 |
+
out = pipe(text, return_all_scores=True)
|
15 |
+
return {pred["label"]: pred["score"] for pred in out}
|
16 |
+
elif model == "vader":
|
17 |
+
sia = SentimentIntensityAnalyzer()
|
18 |
+
return sia.polarity_scores(text)
|
19 |
+
|
20 |
+
|
21 |
|
22 |
demo = gr.Blocks()
|
23 |
|
24 |
with demo:
|
25 |
+
gr.Markdown("A bunch of different Gradio demos in tabs.\n\nNote that generally, the code that is in each tab could be its own Gradio application!")
|
26 |
with gr.Tabs():
|
27 |
+
gr.Markdown('The most basic "Hello World"-type demo you can write')
|
28 |
+
with gr.TabItem("Basic Hello"):
|
|
|
|
|
|
|
|
|
29 |
interface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
30 |
+
with gr.TabItem("Label Output"):
|
31 |
+
gr.Markdown("An example of a basic interface with a classification label as output")
|
32 |
+
interface = gr.Interface(fn=classify, inputs="text", outputs="label")
|
33 |
+
|
34 |
+
with gr.TabItem("Multiple Inputs"):
|
35 |
+
gr.Markdown("A more complex interface for sentiment analysis with multiple inputs, including a dropdown, and some examples")
|
36 |
+
demo = gr.Interface(
|
37 |
+
sentence_builder,
|
38 |
+
[
|
39 |
+
gr.TextBox(placeholder="Your text input"),
|
40 |
+
gr.Dropdown(
|
41 |
+
["finiteautomata/bertweet-base-sentiment-analysis", "vader"], label="Model"
|
42 |
+
),
|
43 |
+
],
|
44 |
+
"text",
|
45 |
+
examples=[
|
46 |
+
["Happy smile", "vader"],
|
47 |
+
["Happy smile", "finiteautomata/bertweet-base-sentiment-analysis"],
|
48 |
+
["Sad frown", "vader"],
|
49 |
+
["Sad frown", "finiteautomata/bertweet-base-sentiment-analysis"],
|
50 |
+
]
|
51 |
+
)
|
52 |
+
|
53 |
|
54 |
text_button.click(flip_text, inputs=text_input, outputs=text_output)
|
55 |
|