Spaces:
Runtime error
Runtime error
# Weaviate | |
This page covers how to use the Weaviate ecosystem within LangChain. | |
What is Weaviate? | |
**Weaviate in a nutshell:** | |
- Weaviate is an open-source database of the type vector search engine. | |
- Weaviate allows you to store JSON documents in a class property-like fashion while attaching machine learning vectors to these documents to represent them in vector space. | |
- Weaviate can be used stand-alone (aka bring your vectors) or with a variety of modules that can do the vectorization for you and extend the core capabilities. | |
- Weaviate has a GraphQL-API to access your data easily. | |
- We aim to bring your vector search set up to production to query in mere milliseconds (check our [open source benchmarks](https://weaviate.io/developers/weaviate/current/benchmarks/) to see if Weaviate fits your use case). | |
- Get to know Weaviate in the [basics getting started guide](https://weaviate.io/developers/weaviate/current/core-knowledge/basics.html) in under five minutes. | |
**Weaviate in detail:** | |
Weaviate is a low-latency vector search engine with out-of-the-box support for different media types (text, images, etc.). It offers Semantic Search, Question-Answer Extraction, Classification, Customizable Models (PyTorch/TensorFlow/Keras), etc. Built from scratch in Go, Weaviate stores both objects and vectors, allowing for combining vector search with structured filtering and the fault tolerance of a cloud-native database. It is all accessible through GraphQL, REST, and various client-side programming languages. | |
## Installation and Setup | |
- Install the Python SDK with `pip install weaviate-client` | |
## Wrappers | |
### VectorStore | |
There exists a wrapper around Weaviate indexes, allowing you to use it as a vectorstore, | |
whether for semantic search or example selection. | |
To import this vectorstore: | |
```python | |
from langchain.vectorstores import Weaviate | |
``` | |
For a more detailed walkthrough of the Weaviate wrapper, see [this notebook](../modules/indexes/examples/vectorstores.ipynb) | |