File size: 7,969 Bytes
0866aba 10e9b7d 0866aba 10e9b7d 3c4371f 10e9b7d 0866aba 912f746 0866aba 3db6293 0866aba e80aab9 0866aba 912f746 0866aba 31243f4 0866aba 31243f4 0866aba 3c4371f 0866aba 912f746 0866aba 3c4371f 7e4a06b 31243f4 e80aab9 0866aba 31243f4 0866aba 31243f4 3c4371f 0866aba 31243f4 0866aba 31243f4 0866aba 912f746 0866aba 31243f4 e80aab9 0866aba e80aab9 0866aba e80aab9 0866aba 0ee0419 e514fd7 0866aba e514fd7 912f746 0866aba e514fd7 e80aab9 7e4a06b e80aab9 0866aba e80aab9 0866aba 31243f4 0866aba e80aab9 0866aba 7d65c66 3c4371f 0866aba 7d65c66 3c4371f 0866aba 3c4371f 0866aba 7d65c66 0866aba 7d65c66 0866aba 7d65c66 0866aba 7d65c66 0866aba 3c4371f 31243f4 0866aba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import asyncio
import json
import os
from pathlib import Path
import aiohttp
import gradio as gr
import pandas as pd
from agent import Agent
from src.tracing import add_tracing
add_tracing()
# --- Constants --------------------------------------------------------------
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
CACHE_PATH = Path("answers_cache.json") # local answer cache
MAX_CONCURRENCY = int(os.getenv("MAX_CONCURRENCY", 8)) # tune if needed
# ----------------------------------------------------------------------------
# ---------------------------------------------------------------------------
# Small helpers
# ---------------------------------------------------------------------------
def load_cache() -> dict[str, str]:
if CACHE_PATH.is_file():
try:
return json.loads(CACHE_PATH.read_text())
except Exception:
print("⚠️ Cache file corrupt – starting fresh.")
return {}
def save_cache(cache: dict[str, str]) -> None:
tmp = CACHE_PATH.with_suffix(".tmp")
tmp.write_text(json.dumps(cache, ensure_ascii=False, indent=2))
tmp.replace(CACHE_PATH)
# ---------------------------------------------------------------------------
# Core async logic
# ---------------------------------------------------------------------------
async def _fetch_questions(
session: aiohttp.ClientSession, url: str
) -> list[dict]:
async with session.get(url, timeout=15) as r:
r.raise_for_status()
return await r.json()
async def _submit_answers(session: aiohttp.ClientSession, url: str, data: dict):
async with session.post(url, json=data, timeout=60) as r:
r.raise_for_status()
return await r.json()
async def _run_agent_async(
agent: Agent,
question: str,
task_id: str | int,
file_name: str,
cache: dict[str, str],
semaphore: asyncio.Semaphore,
) -> tuple[str | int, str]:
"""
Run the agent in a threadpool (because most agents are sync / blocking),
respecting concurrency limits, and fill the cache.
"""
if str(task_id) in cache:
return task_id, cache[str(task_id)]
loop = asyncio.get_running_loop()
async with semaphore:
answer = await loop.run_in_executor(
None, agent, question, file_name
) # execute in default thread‑pool
cache[str(task_id)] = answer
return task_id, answer
async def _async_main(profile: gr.OAuthProfile | None):
"""
Async counterpart of run_and_submit_all; returns (status_msg, results_df)
"""
if not profile:
return "Please login with the Hugging Face button.", None
username = profile.username
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Build agent (sync, cheap)
try:
agent = Agent()
except Exception as e:
return f"Error initializing agent: {e}", None
# 2. Fetch questions
async with aiohttp.ClientSession() as session:
try:
questions = await _fetch_questions(session, questions_url)
except Exception as e:
return f"Error fetching questions: {e}", None
if not questions:
return "Fetched questions list is empty.", None
# 3. Run agent with cache + limited concurrency
cache = load_cache()
sem = asyncio.Semaphore(MAX_CONCURRENCY)
coros = [
_run_agent_async(
agent, q["question"], q["task_id"], q["file_name"], cache, sem
)
for q in questions
if q.get("task_id") and q.get("question") is not None
]
results_log: list[dict] = []
answers_json: list[dict] = []
for task_id, answer in await asyncio.gather(*coros):
answers_json.append(
{"task_id": task_id, "submitted_answer": answer}
)
results_log.append(
{
"Task ID": task_id,
"Question": next(
(
q["question"]
for q in questions
if q["task_id"] == task_id
),
"",
),
"Submitted Answer": answer,
}
)
# 3b. Persist cache for later runs
save_cache(cache)
if not answers_json:
return "Agent produced no answers.", pd.DataFrame(results_log)
# 4. Submit
submission = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_json,
}
try:
result = await _submit_answers(session, submit_url, submission)
except Exception as e:
status = f"Submission failed: {e}"
return status, pd.DataFrame(results_log)
# Format success message
final = (
"Submission Successful!\n"
f"User: {result.get('username')}\n"
f"Overall Score: {result.get('score', 'N/A')}% "
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')} correct)\n"
f"Message: {result.get('message', 'No message received.')}"
)
return final, pd.DataFrame(results_log)
# ---------------------------------------------------------------------------
# Thin sync wrapper required by gradio
# ---------------------------------------------------------------------------
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Synchronous façade expected by Gradio; just dispatches to asyncio.
"""
return asyncio.run(_async_main(profile))
# ---------------------------------------------------------------------------
# Gradio UI (unchanged except for doc‑string tweaks)
# ---------------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Async‑cached Agent Evaluation Runner")
gr.Markdown(
"""
**Quick‑start**
1. Log in with the HF button (needed for ranking).
2. Hit **Run Evaluation & Submit All Answers** – answers are cached
locally so reruns are instant; agent calls & HTTP are parallel.
"""
)
gr.LoginButton()
run_btn = gr.Button("Run Evaluation & Submit All Answers")
status_box = gr.Textbox(label="Status / Submission Result", lines=5)
results_table = gr.DataFrame(label="Questions & Answers", wrap=True)
run_btn.click(
fn=run_and_submit_all,
outputs=[status_box, results_table],
)
if __name__ == "__main__":
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(
f" Runtime URL should be: https://{space_host_startup}.hf.space"
)
else:
print(
"ℹ️ SPACE_HOST environment variable not found (running locally?)."
)
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
)
else:
print(
"ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
)
print("-" * (60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|