Commit
·
0866aba
1
Parent(s):
81917a3
rework app to use async and cache
Browse files- .gitignore +3 -0
- agent.py +10 -0
- app.py +185 -145
- requirements.txt +2 -1
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
answer_cache.json
|
2 |
+
uv.lock
|
3 |
+
.venv
|
agent.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --- Basic Agent Definition ---
|
2 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
3 |
+
class Agent:
|
4 |
+
def __init__(self):
|
5 |
+
print("BasicAgent initialized.")
|
6 |
+
def __call__(self, question: str) -> str:
|
7 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
8 |
+
fixed_answer = "This is a default answer."
|
9 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
10 |
+
return fixed_answer
|
app.py
CHANGED
@@ -1,196 +1,236 @@
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
-
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
|
7 |
-
|
8 |
-
|
|
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"""
|
24 |
-
|
25 |
-
and
|
26 |
"""
|
27 |
-
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
api_url = DEFAULT_API_URL
|
38 |
questions_url = f"{api_url}/questions"
|
39 |
submit_url = f"{api_url}/submit"
|
40 |
|
41 |
-
# 1.
|
42 |
try:
|
43 |
-
agent =
|
44 |
except Exception as e:
|
45 |
-
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
47 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
48 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
-
print(agent_code)
|
50 |
|
51 |
-
# 2. Fetch
|
52 |
-
|
53 |
-
try:
|
54 |
-
response = requests.get(questions_url, timeout=15)
|
55 |
-
response.raise_for_status()
|
56 |
-
questions_data = response.json()
|
57 |
-
if not questions_data:
|
58 |
-
print("Fetched questions list is empty.")
|
59 |
-
return "Fetched questions list is empty or invalid format.", None
|
60 |
-
print(f"Fetched {len(questions_data)} questions.")
|
61 |
-
except requests.exceptions.RequestException as e:
|
62 |
-
print(f"Error fetching questions: {e}")
|
63 |
-
return f"Error fetching questions: {e}", None
|
64 |
-
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
66 |
-
print(f"Response text: {response.text[:500]}")
|
67 |
-
return f"Error decoding server response for questions: {e}", None
|
68 |
-
except Exception as e:
|
69 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
-
|
72 |
-
# 3. Run your Agent
|
73 |
-
results_log = []
|
74 |
-
answers_payload = []
|
75 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
-
for item in questions_data:
|
77 |
-
task_id = item.get("task_id")
|
78 |
-
question_text = item.get("question")
|
79 |
-
if not task_id or question_text is None:
|
80 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
-
continue
|
82 |
try:
|
83 |
-
|
84 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
except Exception as e:
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
# 4. Prepare Submission
|
95 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
96 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
-
print(status_update)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
f"User: {result_data.get('username')}\n"
|
108 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
109 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
110 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
111 |
-
)
|
112 |
-
print("Submission successful.")
|
113 |
-
results_df = pd.DataFrame(results_log)
|
114 |
-
return final_status, results_df
|
115 |
-
except requests.exceptions.HTTPError as e:
|
116 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
117 |
-
try:
|
118 |
-
error_json = e.response.json()
|
119 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
120 |
-
except requests.exceptions.JSONDecodeError:
|
121 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
122 |
-
status_message = f"Submission Failed: {error_detail}"
|
123 |
-
print(status_message)
|
124 |
-
results_df = pd.DataFrame(results_log)
|
125 |
-
return status_message, results_df
|
126 |
-
except requests.exceptions.Timeout:
|
127 |
-
status_message = "Submission Failed: The request timed out."
|
128 |
-
print(status_message)
|
129 |
-
results_df = pd.DataFrame(results_log)
|
130 |
-
return status_message, results_df
|
131 |
-
except requests.exceptions.RequestException as e:
|
132 |
-
status_message = f"Submission Failed: Network error - {e}"
|
133 |
-
print(status_message)
|
134 |
-
results_df = pd.DataFrame(results_log)
|
135 |
-
return status_message, results_df
|
136 |
-
except Exception as e:
|
137 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
138 |
-
print(status_message)
|
139 |
-
results_df = pd.DataFrame(results_log)
|
140 |
-
return status_message, results_df
|
141 |
|
142 |
|
143 |
-
#
|
|
|
|
|
144 |
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("#
|
|
|
146 |
gr.Markdown(
|
147 |
"""
|
148 |
-
**
|
149 |
-
|
150 |
-
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
151 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
152 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
"""
|
159 |
)
|
160 |
|
161 |
gr.LoginButton()
|
162 |
|
163 |
-
|
|
|
|
|
164 |
|
165 |
-
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
-
|
169 |
-
run_button.click(
|
170 |
fn=run_and_submit_all,
|
171 |
-
outputs=[
|
172 |
)
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID")
|
179 |
|
180 |
if space_host_startup:
|
181 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
182 |
-
print(
|
|
|
|
|
183 |
else:
|
184 |
-
print(
|
|
|
|
|
185 |
|
186 |
-
if space_id_startup:
|
187 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
188 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
-
print(
|
|
|
|
|
190 |
else:
|
191 |
-
print(
|
|
|
|
|
192 |
|
193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
|
195 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
+
import asyncio
|
2 |
+
import json
|
3 |
import os
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import aiohttp
|
7 |
import gradio as gr
|
|
|
|
|
8 |
import pandas as pd
|
9 |
|
10 |
+
from agent import Agent
|
11 |
+
|
12 |
+
# --- Constants --------------------------------------------------------------
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
+
CACHE_PATH = Path("answers_cache.json") # local answer cache
|
15 |
+
MAX_CONCURRENCY = int(os.getenv("MAX_CONCURRENCY", 8)) # tune if needed
|
16 |
+
# ----------------------------------------------------------------------------
|
17 |
|
18 |
+
|
19 |
+
# ---------------------------------------------------------------------------
|
20 |
+
# Small helpers
|
21 |
+
# ---------------------------------------------------------------------------
|
22 |
+
def load_cache() -> dict[str, str]:
|
23 |
+
if CACHE_PATH.is_file():
|
24 |
+
try:
|
25 |
+
return json.loads(CACHE_PATH.read_text())
|
26 |
+
except Exception:
|
27 |
+
print("⚠️ Cache file corrupt – starting fresh.")
|
28 |
+
return {}
|
29 |
+
|
30 |
+
|
31 |
+
def save_cache(cache: dict[str, str]) -> None:
|
32 |
+
tmp = CACHE_PATH.with_suffix(".tmp")
|
33 |
+
tmp.write_text(json.dumps(cache, ensure_ascii=False, indent=2))
|
34 |
+
tmp.replace(CACHE_PATH)
|
35 |
+
|
36 |
+
|
37 |
+
# ---------------------------------------------------------------------------
|
38 |
+
# Core async logic
|
39 |
+
# ---------------------------------------------------------------------------
|
40 |
+
async def _fetch_questions(
|
41 |
+
session: aiohttp.ClientSession, url: str
|
42 |
+
) -> list[dict]:
|
43 |
+
async with session.get(url, timeout=15) as r:
|
44 |
+
r.raise_for_status()
|
45 |
+
return await r.json()
|
46 |
+
|
47 |
+
|
48 |
+
async def _submit_answers(session: aiohttp.ClientSession, url: str, data: dict):
|
49 |
+
async with session.post(url, json=data, timeout=60) as r:
|
50 |
+
r.raise_for_status()
|
51 |
+
return await r.json()
|
52 |
+
|
53 |
+
|
54 |
+
async def _run_agent_async(
|
55 |
+
agent: Agent,
|
56 |
+
question: str,
|
57 |
+
task_id: str | int,
|
58 |
+
cache: dict[str, str],
|
59 |
+
semaphore: asyncio.Semaphore,
|
60 |
+
) -> tuple[str | int, str]:
|
61 |
"""
|
62 |
+
Run the agent in a threadpool (because most agents are sync / blocking),
|
63 |
+
respecting concurrency limits, and fill the cache.
|
64 |
"""
|
65 |
+
if str(task_id) in cache:
|
66 |
+
return task_id, cache[str(task_id)]
|
67 |
|
68 |
+
loop = asyncio.get_running_loop()
|
69 |
+
async with semaphore:
|
70 |
+
answer = await loop.run_in_executor(
|
71 |
+
None, agent, question
|
72 |
+
) # execute in default thread‑pool
|
73 |
+
cache[str(task_id)] = answer
|
74 |
+
return task_id, answer
|
75 |
+
|
76 |
+
|
77 |
+
async def _async_main(profile: gr.OAuthProfile | None):
|
78 |
+
"""
|
79 |
+
Async counterpart of run_and_submit_all; returns (status_msg, results_df)
|
80 |
+
"""
|
81 |
+
if not profile:
|
82 |
+
return "Please login with the Hugging Face button.", None
|
83 |
+
|
84 |
+
username = profile.username
|
85 |
+
space_id = os.getenv("SPACE_ID")
|
86 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
87 |
|
88 |
api_url = DEFAULT_API_URL
|
89 |
questions_url = f"{api_url}/questions"
|
90 |
submit_url = f"{api_url}/submit"
|
91 |
|
92 |
+
# 1. Build agent (sync, cheap)
|
93 |
try:
|
94 |
+
agent = Agent()
|
95 |
except Exception as e:
|
|
|
96 |
return f"Error initializing agent: {e}", None
|
|
|
|
|
|
|
97 |
|
98 |
+
# 2. Fetch questions
|
99 |
+
async with aiohttp.ClientSession() as session:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
try:
|
101 |
+
questions = await _fetch_questions(session, questions_url)
|
|
|
|
|
102 |
except Exception as e:
|
103 |
+
return f"Error fetching questions: {e}", None
|
104 |
+
|
105 |
+
if not questions:
|
106 |
+
return "Fetched questions list is empty.", None
|
107 |
+
|
108 |
+
# 3. Run agent with cache + limited concurrency
|
109 |
+
cache = load_cache()
|
110 |
+
sem = asyncio.Semaphore(MAX_CONCURRENCY)
|
111 |
+
coros = [
|
112 |
+
_run_agent_async(agent, q["question"], q["task_id"], cache, sem)
|
113 |
+
for q in questions
|
114 |
+
if q.get("task_id") and q.get("question") is not None
|
115 |
+
]
|
116 |
+
|
117 |
+
results_log: list[dict] = []
|
118 |
+
answers_json: list[dict] = []
|
119 |
+
|
120 |
+
for task_id, answer in await asyncio.gather(*coros):
|
121 |
+
answers_json.append(
|
122 |
+
{"task_id": task_id, "submitted_answer": answer}
|
123 |
+
)
|
124 |
+
results_log.append(
|
125 |
+
{
|
126 |
+
"Task ID": task_id,
|
127 |
+
"Question": next(
|
128 |
+
(
|
129 |
+
q["question"]
|
130 |
+
for q in questions
|
131 |
+
if q["task_id"] == task_id
|
132 |
+
),
|
133 |
+
"",
|
134 |
+
),
|
135 |
+
"Submitted Answer": answer,
|
136 |
+
}
|
137 |
+
)
|
138 |
+
|
139 |
+
# 3b. Persist cache for later runs
|
140 |
+
save_cache(cache)
|
141 |
+
|
142 |
+
if not answers_json:
|
143 |
+
return "Agent produced no answers.", pd.DataFrame(results_log)
|
144 |
+
|
145 |
+
# 4. Submit
|
146 |
+
submission = {
|
147 |
+
"username": username.strip(),
|
148 |
+
"agent_code": agent_code,
|
149 |
+
"answers": answers_json,
|
150 |
+
}
|
151 |
+
try:
|
152 |
+
result = await _submit_answers(session, submit_url, submission)
|
153 |
+
except Exception as e:
|
154 |
+
status = f"Submission failed: {e}"
|
155 |
+
return status, pd.DataFrame(results_log)
|
156 |
+
|
157 |
+
# Format success message
|
158 |
+
final = (
|
159 |
+
"Submission Successful!\n"
|
160 |
+
f"User: {result.get('username')}\n"
|
161 |
+
f"Overall Score: {result.get('score', 'N/A')}% "
|
162 |
+
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')} correct)\n"
|
163 |
+
f"Message: {result.get('message', 'No message received.')}"
|
164 |
+
)
|
165 |
+
return final, pd.DataFrame(results_log)
|
166 |
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
# ---------------------------------------------------------------------------
|
169 |
+
# Thin sync wrapper required by gradio
|
170 |
+
# ---------------------------------------------------------------------------
|
171 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
172 |
+
"""
|
173 |
+
Synchronous façade expected by Gradio; just dispatches to asyncio.
|
174 |
+
"""
|
175 |
+
return asyncio.run(_async_main(profile))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
|
178 |
+
# ---------------------------------------------------------------------------
|
179 |
+
# Gradio UI (unchanged except for doc‑string tweaks)
|
180 |
+
# ---------------------------------------------------------------------------
|
181 |
with gr.Blocks() as demo:
|
182 |
+
gr.Markdown("# Async‑cached Agent Evaluation Runner")
|
183 |
+
|
184 |
gr.Markdown(
|
185 |
"""
|
186 |
+
**Quick‑start**
|
|
|
|
|
|
|
|
|
187 |
|
188 |
+
1. Fork this space, bring your own `Agent` in `agent.py`.
|
189 |
+
2. Log in with the HF button (needed for ranking).
|
190 |
+
3. Hit **Run Evaluation & Submit All Answers** – answers are cached
|
191 |
+
locally so reruns are instant; agent calls & HTTP are parallel.
|
192 |
"""
|
193 |
)
|
194 |
|
195 |
gr.LoginButton()
|
196 |
|
197 |
+
run_btn = gr.Button("Run Evaluation & Submit All Answers")
|
198 |
+
status_box = gr.Textbox(label="Status / Submission Result", lines=5)
|
199 |
+
results_table = gr.DataFrame(label="Questions & Answers", wrap=True)
|
200 |
|
201 |
+
run_btn.click(
|
|
|
|
|
|
|
|
|
202 |
fn=run_and_submit_all,
|
203 |
+
outputs=[status_box, results_table],
|
204 |
)
|
205 |
|
206 |
if __name__ == "__main__":
|
207 |
+
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
|
208 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
209 |
space_host_startup = os.getenv("SPACE_HOST")
|
210 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
211 |
|
212 |
if space_host_startup:
|
213 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
214 |
+
print(
|
215 |
+
f" Runtime URL should be: https://{space_host_startup}.hf.space"
|
216 |
+
)
|
217 |
else:
|
218 |
+
print(
|
219 |
+
"ℹ️ SPACE_HOST environment variable not found (running locally?)."
|
220 |
+
)
|
221 |
|
222 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
223 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
224 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
225 |
+
print(
|
226 |
+
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
|
227 |
+
)
|
228 |
else:
|
229 |
+
print(
|
230 |
+
"ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
|
231 |
+
)
|
232 |
|
233 |
+
print("-" * (60 + len(" App Starting ")) + "\n")
|
234 |
|
235 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
236 |
+
demo.launch(debug=True, share=False)
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
gradio
|
2 |
-
requests
|
|
|
|
1 |
gradio
|
2 |
+
requests
|
3 |
+
aiohttp
|