mhattingpete commited on
Commit
0866aba
·
1 Parent(s): 81917a3

rework app to use async and cache

Browse files
Files changed (4) hide show
  1. .gitignore +3 -0
  2. agent.py +10 -0
  3. app.py +185 -145
  4. requirements.txt +2 -1
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ answer_cache.json
2
+ uv.lock
3
+ .venv
agent.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # --- Basic Agent Definition ---
2
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
3
+ class Agent:
4
+ def __init__(self):
5
+ print("BasicAgent initialized.")
6
+ def __call__(self, question: str) -> str:
7
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
8
+ fixed_answer = "This is a default answer."
9
+ print(f"Agent returning fixed answer: {fixed_answer}")
10
+ return fixed_answer
app.py CHANGED
@@ -1,196 +1,236 @@
 
 
1
  import os
 
 
 
2
  import gradio as gr
3
- import requests
4
- import inspect
5
  import pandas as pd
6
 
7
- # (Keep Constants as is)
8
- # --- Constants ---
 
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
 
 
 
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
  """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
30
- if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
- else:
34
- print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  api_url = DEFAULT_API_URL
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
- agent = BasicAgent()
44
  except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
 
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
- try:
54
- response = requests.get(questions_url, timeout=15)
55
- response.raise_for_status()
56
- questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
- except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
-
72
- # 3. Run your Agent
73
- results_log = []
74
- answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
- for item in questions_data:
77
- task_id = item.get("task_id")
78
- question_text = item.get("question")
79
- if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
- continue
82
  try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
-
90
- if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
 
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
- try:
102
- response = requests.post(submit_url, json=submission_data, timeout=60)
103
- response.raise_for_status()
104
- result_data = response.json()
105
- final_status = (
106
- f"Submission Successful!\n"
107
- f"User: {result_data.get('username')}\n"
108
- f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
111
- )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
- except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
 
142
 
143
- # --- Build Gradio Interface using Blocks ---
 
 
144
  with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
 
146
  gr.Markdown(
147
  """
148
- **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
 
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
  )
160
 
161
  gr.LoginButton()
162
 
163
- run_button = gr.Button("Run Evaluation & Submit All Answers")
 
 
164
 
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
-
169
- run_button.click(
170
  fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
  )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
  # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
  print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
 
 
183
  else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
 
 
185
 
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"✅ SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
 
 
190
  else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
 
 
192
 
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
 
195
  print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
1
+ import asyncio
2
+ import json
3
  import os
4
+ from pathlib import Path
5
+
6
+ import aiohttp
7
  import gradio as gr
 
 
8
  import pandas as pd
9
 
10
+ from agent import Agent
11
+
12
+ # --- Constants --------------------------------------------------------------
13
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
14
+ CACHE_PATH = Path("answers_cache.json") # local answer cache
15
+ MAX_CONCURRENCY = int(os.getenv("MAX_CONCURRENCY", 8)) # tune if needed
16
+ # ----------------------------------------------------------------------------
17
 
18
+
19
+ # ---------------------------------------------------------------------------
20
+ # Small helpers
21
+ # ---------------------------------------------------------------------------
22
+ def load_cache() -> dict[str, str]:
23
+ if CACHE_PATH.is_file():
24
+ try:
25
+ return json.loads(CACHE_PATH.read_text())
26
+ except Exception:
27
+ print("⚠️ Cache file corrupt – starting fresh.")
28
+ return {}
29
+
30
+
31
+ def save_cache(cache: dict[str, str]) -> None:
32
+ tmp = CACHE_PATH.with_suffix(".tmp")
33
+ tmp.write_text(json.dumps(cache, ensure_ascii=False, indent=2))
34
+ tmp.replace(CACHE_PATH)
35
+
36
+
37
+ # ---------------------------------------------------------------------------
38
+ # Core async logic
39
+ # ---------------------------------------------------------------------------
40
+ async def _fetch_questions(
41
+ session: aiohttp.ClientSession, url: str
42
+ ) -> list[dict]:
43
+ async with session.get(url, timeout=15) as r:
44
+ r.raise_for_status()
45
+ return await r.json()
46
+
47
+
48
+ async def _submit_answers(session: aiohttp.ClientSession, url: str, data: dict):
49
+ async with session.post(url, json=data, timeout=60) as r:
50
+ r.raise_for_status()
51
+ return await r.json()
52
+
53
+
54
+ async def _run_agent_async(
55
+ agent: Agent,
56
+ question: str,
57
+ task_id: str | int,
58
+ cache: dict[str, str],
59
+ semaphore: asyncio.Semaphore,
60
+ ) -> tuple[str | int, str]:
61
  """
62
+ Run the agent in a threadpool (because most agents are sync / blocking),
63
+ respecting concurrency limits, and fill the cache.
64
  """
65
+ if str(task_id) in cache:
66
+ return task_id, cache[str(task_id)]
67
 
68
+ loop = asyncio.get_running_loop()
69
+ async with semaphore:
70
+ answer = await loop.run_in_executor(
71
+ None, agent, question
72
+ ) # execute in default thread‑pool
73
+ cache[str(task_id)] = answer
74
+ return task_id, answer
75
+
76
+
77
+ async def _async_main(profile: gr.OAuthProfile | None):
78
+ """
79
+ Async counterpart of run_and_submit_all; returns (status_msg, results_df)
80
+ """
81
+ if not profile:
82
+ return "Please login with the Hugging Face button.", None
83
+
84
+ username = profile.username
85
+ space_id = os.getenv("SPACE_ID")
86
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
87
 
88
  api_url = DEFAULT_API_URL
89
  questions_url = f"{api_url}/questions"
90
  submit_url = f"{api_url}/submit"
91
 
92
+ # 1. Build agent (sync, cheap)
93
  try:
94
+ agent = Agent()
95
  except Exception as e:
 
96
  return f"Error initializing agent: {e}", None
 
 
 
97
 
98
+ # 2. Fetch questions
99
+ async with aiohttp.ClientSession() as session:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
  try:
101
+ questions = await _fetch_questions(session, questions_url)
 
 
102
  except Exception as e:
103
+ return f"Error fetching questions: {e}", None
104
+
105
+ if not questions:
106
+ return "Fetched questions list is empty.", None
107
+
108
+ # 3. Run agent with cache + limited concurrency
109
+ cache = load_cache()
110
+ sem = asyncio.Semaphore(MAX_CONCURRENCY)
111
+ coros = [
112
+ _run_agent_async(agent, q["question"], q["task_id"], cache, sem)
113
+ for q in questions
114
+ if q.get("task_id") and q.get("question") is not None
115
+ ]
116
+
117
+ results_log: list[dict] = []
118
+ answers_json: list[dict] = []
119
+
120
+ for task_id, answer in await asyncio.gather(*coros):
121
+ answers_json.append(
122
+ {"task_id": task_id, "submitted_answer": answer}
123
+ )
124
+ results_log.append(
125
+ {
126
+ "Task ID": task_id,
127
+ "Question": next(
128
+ (
129
+ q["question"]
130
+ for q in questions
131
+ if q["task_id"] == task_id
132
+ ),
133
+ "",
134
+ ),
135
+ "Submitted Answer": answer,
136
+ }
137
+ )
138
+
139
+ # 3b. Persist cache for later runs
140
+ save_cache(cache)
141
+
142
+ if not answers_json:
143
+ return "Agent produced no answers.", pd.DataFrame(results_log)
144
+
145
+ # 4. Submit
146
+ submission = {
147
+ "username": username.strip(),
148
+ "agent_code": agent_code,
149
+ "answers": answers_json,
150
+ }
151
+ try:
152
+ result = await _submit_answers(session, submit_url, submission)
153
+ except Exception as e:
154
+ status = f"Submission failed: {e}"
155
+ return status, pd.DataFrame(results_log)
156
+
157
+ # Format success message
158
+ final = (
159
+ "Submission Successful!\n"
160
+ f"User: {result.get('username')}\n"
161
+ f"Overall Score: {result.get('score', 'N/A')}% "
162
+ f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')} correct)\n"
163
+ f"Message: {result.get('message', 'No message received.')}"
164
+ )
165
+ return final, pd.DataFrame(results_log)
166
 
 
 
 
 
167
 
168
+ # ---------------------------------------------------------------------------
169
+ # Thin sync wrapper required by gradio
170
+ # ---------------------------------------------------------------------------
171
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
172
+ """
173
+ Synchronous façade expected by Gradio; just dispatches to asyncio.
174
+ """
175
+ return asyncio.run(_async_main(profile))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176
 
177
 
178
+ # ---------------------------------------------------------------------------
179
+ # Gradio UI (unchanged except for doc‑string tweaks)
180
+ # ---------------------------------------------------------------------------
181
  with gr.Blocks() as demo:
182
+ gr.Markdown("# Async‑cached Agent Evaluation Runner")
183
+
184
  gr.Markdown(
185
  """
186
+ **Quick‑start**
 
 
 
 
187
 
188
+ 1. Fork this space, bring your own `Agent` in `agent.py`.
189
+ 2. Log in with the HF button (needed for ranking).
190
+ 3. Hit **Run Evaluation & Submit All Answers** answers are cached
191
+ locally so reruns are instant; agent calls & HTTP are parallel.
192
  """
193
  )
194
 
195
  gr.LoginButton()
196
 
197
+ run_btn = gr.Button("Run Evaluation & Submit All Answers")
198
+ status_box = gr.Textbox(label="Status / Submission Result", lines=5)
199
+ results_table = gr.DataFrame(label="Questions & Answers", wrap=True)
200
 
201
+ run_btn.click(
 
 
 
 
202
  fn=run_and_submit_all,
203
+ outputs=[status_box, results_table],
204
  )
205
 
206
  if __name__ == "__main__":
207
+ print("\n" + "-" * 30 + " App Starting " + "-" * 30)
208
  # Check for SPACE_HOST and SPACE_ID at startup for information
209
  space_host_startup = os.getenv("SPACE_HOST")
210
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
211
 
212
  if space_host_startup:
213
  print(f"✅ SPACE_HOST found: {space_host_startup}")
214
+ print(
215
+ f" Runtime URL should be: https://{space_host_startup}.hf.space"
216
+ )
217
  else:
218
+ print(
219
+ "ℹ️ SPACE_HOST environment variable not found (running locally?)."
220
+ )
221
 
222
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
223
  print(f"✅ SPACE_ID found: {space_id_startup}")
224
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
225
+ print(
226
+ f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
227
+ )
228
  else:
229
+ print(
230
+ "ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
231
+ )
232
 
233
+ print("-" * (60 + len(" App Starting ")) + "\n")
234
 
235
  print("Launching Gradio Interface for Basic Agent Evaluation...")
236
+ demo.launch(debug=True, share=False)
requirements.txt CHANGED
@@ -1,2 +1,3 @@
1
  gradio
2
- requests
 
 
1
  gradio
2
+ requests
3
+ aiohttp