File size: 7,490 Bytes
fa7e3c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9aee41
fa7e3c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d68ad6
 
fa7e3c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread

phi4_model_path = "microsoft/phi-4"
phi4_mini_model_path = "microsoft/Phi-4-mini-instruct"

device = "cuda:0" if torch.cuda.is_available() else "cpu"

phi4_model = AutoModelForCausalLM.from_pretrained(phi4_model_path, torch_dtype="auto").to(device)
phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
phi4_mini_model = AutoModelForCausalLM.from_pretrained(phi4_mini_model_path, torch_dtype="auto").to(device)
phi4_mini_tokenizer = AutoTokenizer.from_pretrained(phi4_mini_model_path)

@spaces.GPU(duration=60)
def generate_response(user_message, model_name, max_tokens, temperature, top_k, top_p, repetition_penalty, history_state):
    if not user_message.strip():
        return history_state, history_state
        
    # Select models 
    if model_name == "Phi-4":
        model = phi4_model
        tokenizer = phi4_tokenizer
        start_tag = "<|im_start|>"
        sep_tag = "<|im_sep|>"
        end_tag = "<|im_end|>"
    elif model_name == "Phi-4-mini-instruct":
        model = phi4_mini_model
        tokenizer = phi4_mini_tokenizer
        start_tag = ""
        sep_tag = ""
        end_tag = "<|end|>"
    else:
        raise ValueError("Error loading on models")

    # Recommended prompt settings by Microsoft
    system_message = "You are a friendly and knowledgeable assistant, here to help with any questions or tasks."
    if model_name == "Phi-4":
        prompt = f"{start_tag}system{sep_tag}{system_message}{end_tag}"
        for message in history_state:
            if message["role"] == "user":
                prompt += f"{start_tag}user{sep_tag}{message['content']}{end_tag}"
            elif message["role"] == "assistant" and message["content"]:
                prompt += f"{start_tag}assistant{sep_tag}{message['content']}{end_tag}"
        prompt += f"{start_tag}user{sep_tag}{user_message}{end_tag}{start_tag}assistant{sep_tag}"
    else:
        prompt = f"<|system|>{system_message}{end_tag}"
        for message in history_state:
            if message["role"] == "user":
                prompt += f"<|user|>{message['content']}{end_tag}"
            elif message["role"] == "assistant" and message["content"]:
                prompt += f"<|assistant|>{message['content']}{end_tag}"
        prompt += f"<|user|>{user_message}{end_tag}<|assistant|>"

    inputs = tokenizer(prompt, return_tensors="pt").to(device)

    do_sample = not (temperature == 1.0 and top_k >= 100 and top_p == 1.0)

    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)

    # sampling techniques
    generation_kwargs = {
        "input_ids": inputs["input_ids"],
        "attention_mask": inputs["attention_mask"],
        "max_new_tokens": int(max_tokens),
        "do_sample": do_sample,
        "temperature": temperature,
        "top_k": int(top_k),
        "top_p": top_p,
        "repetition_penalty": repetition_penalty,
        "streamer": streamer,
    }

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    # Stream the response
    assistant_response = ""
    new_history = history_state + [
        {"role": "user", "content": user_message},
        {"role": "assistant", "content": ""}
    ]
    for new_token in streamer:
        cleaned_token = new_token.replace("<|im_start|>", "").replace("<|im_sep|>", "").replace("<|im_end|>", "").replace("<|end|>", "").replace("<|system|>", "").replace("<|user|>", "").replace("<|assistant|>", "")
        assistant_response += cleaned_token
        new_history[-1]["content"] = assistant_response.strip()
        yield new_history, new_history

    yield new_history, new_history

example_messages = {
    "Learn about physics": "Explain Newton’s laws of motion.",
    "Discover space facts": "What are some interesting facts about black holes?",
    "Write a factorial function": "Write a Python function to calculate the factorial of a number."
}

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # Phi-4 Models Chatbot 
        Welcome to the Phi-4 Chatbot! You can chat with Microsoft's Phi-4 or Phi-4-mini-instruct models. Adjust the settings on the left to customize the model's responses.
        """
    )
    
    history_state = gr.State([])

    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### Settings")
            model_dropdown = gr.Dropdown(
                choices=["Phi-4", "Phi-4-mini-instruct"],
                label="Select Model",
                value="Phi-4" 
            )
            max_tokens_slider = gr.Slider(
                minimum=64,
                maximum=4096,
                step=50,
                value=512,
                label="Max Tokens"
            )
            with gr.Accordion("Advanced Settings", open=False):
                temperature_slider = gr.Slider(
                    minimum=0.1,
                    maximum=2.0,
                    value=1.0,
                    label="Temperature"
                )
                top_k_slider = gr.Slider(
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=50,
                    label="Top-k"
                )
                top_p_slider = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.9,
                    label="Top-p"
                )
                repetition_penalty_slider = gr.Slider(
                    minimum=1.0,
                    maximum=2.0,
                    value=1.0,
                    label="Repetition Penalty"
                )
        
        with gr.Column(scale=4):
            chatbot = gr.Chatbot(label="Chat", type="messages")
            with gr.Row():
                user_input = gr.Textbox(
                    label="Your message",
                    placeholder="Type your message here...",
                    scale=3
                )
                submit_button = gr.Button("Send", variant="primary", scale=1)
                clear_button = gr.Button("Clear", scale=1)
            gr.Markdown("**Try these examples:**")
            with gr.Row():
                example1_button = gr.Button("Learn about physics")
                example2_button = gr.Button("Discover space facts")
                example3_button = gr.Button("Write a factorial function")

    submit_button.click(
        fn=generate_response,
        inputs=[user_input, model_dropdown, max_tokens_slider, temperature_slider, top_k_slider, top_p_slider, repetition_penalty_slider, history_state],
        outputs=[chatbot, history_state]
    ).then(
        fn=lambda: gr.update(value=""),
        inputs=None,
        outputs=user_input
    )

    clear_button.click(
        fn=lambda: ([], []),
        inputs=None,
        outputs=[chatbot, history_state]
    )

    example1_button.click(
        fn=lambda: gr.update(value=example_messages["Learn about physics"]),
        inputs=None,
        outputs=user_input
    )
    example2_button.click(
        fn=lambda: gr.update(value=example_messages["Discover space facts"]),
        inputs=None,
        outputs=user_input
    )
    example3_button.click(
        fn=lambda: gr.update(value=example_messages["Write a factorial function"]),
        inputs=None,
        outputs=user_input
    )

demo.launch(ssr_mode=False)