Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
+
import torch
|
5 |
+
from threading import Thread
|
6 |
+
|
7 |
+
phi4_model_path = "microsoft/phi-4"
|
8 |
+
phi4_mini_model_path = "microsoft/Phi-4-mini-instruct"
|
9 |
+
|
10 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
11 |
+
|
12 |
+
phi4_model = AutoModelForCausalLM.from_pretrained(phi4_model_path, torch_dtype="auto").to(device)
|
13 |
+
phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
|
14 |
+
phi4_mini_model = AutoModelForCausalLM.from_pretrained(phi4_mini_model_path, torch_dtype="auto").to(device)
|
15 |
+
phi4_mini_tokenizer = AutoTokenizer.from_pretrained(phi4_mini_model_path)
|
16 |
+
|
17 |
+
@spaces.GPU(duration=60)
|
18 |
+
def generate_response(user_message, model_name, max_tokens, temperature, top_k, top_p, repetition_penalty, history_state):
|
19 |
+
if not user_message.strip():
|
20 |
+
return history_state, history_state
|
21 |
+
|
22 |
+
# Select models
|
23 |
+
if model_name == "Phi-4":
|
24 |
+
model = phi4_model
|
25 |
+
tokenizer = phi4_tokenizer
|
26 |
+
start_tag = "<|im_start|>"
|
27 |
+
sep_tag = "<|im_sep|>"
|
28 |
+
end_tag = "<|im_end|>"
|
29 |
+
elif model_name == "Phi-4-mini-instruct":
|
30 |
+
model = phi4_mini_model
|
31 |
+
tokenizer = phi4_mini_tokenizer
|
32 |
+
start_tag = ""
|
33 |
+
sep_tag = ""
|
34 |
+
end_tag = "<|end|>"
|
35 |
+
else:
|
36 |
+
raise ValueError("Invalid model selected")
|
37 |
+
|
38 |
+
# Recommended prompt settings by Microsoft
|
39 |
+
system_message = "You are a friendly and knowledgeable assistant, here to help with any questions or tasks."
|
40 |
+
if model_name == "Phi-4":
|
41 |
+
prompt = f"{start_tag}system{sep_tag}{system_message}{end_tag}"
|
42 |
+
for message in history_state:
|
43 |
+
if message["role"] == "user":
|
44 |
+
prompt += f"{start_tag}user{sep_tag}{message['content']}{end_tag}"
|
45 |
+
elif message["role"] == "assistant" and message["content"]:
|
46 |
+
prompt += f"{start_tag}assistant{sep_tag}{message['content']}{end_tag}"
|
47 |
+
prompt += f"{start_tag}user{sep_tag}{user_message}{end_tag}{start_tag}assistant{sep_tag}"
|
48 |
+
else:
|
49 |
+
prompt = f"<|system|>{system_message}{end_tag}"
|
50 |
+
for message in history_state:
|
51 |
+
if message["role"] == "user":
|
52 |
+
prompt += f"<|user|>{message['content']}{end_tag}"
|
53 |
+
elif message["role"] == "assistant" and message["content"]:
|
54 |
+
prompt += f"<|assistant|>{message['content']}{end_tag}"
|
55 |
+
prompt += f"<|user|>{user_message}{end_tag}<|assistant|>"
|
56 |
+
|
57 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
58 |
+
|
59 |
+
do_sample = not (temperature == 1.0 and top_k >= 100 and top_p == 1.0)
|
60 |
+
|
61 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
|
62 |
+
|
63 |
+
# sampling techniques
|
64 |
+
generation_kwargs = {
|
65 |
+
"input_ids": inputs["input_ids"],
|
66 |
+
"attention_mask": inputs["attention_mask"],
|
67 |
+
"max_new_tokens": int(max_tokens),
|
68 |
+
"do_sample": do_sample,
|
69 |
+
"temperature": temperature,
|
70 |
+
"top_k": int(top_k),
|
71 |
+
"top_p": top_p,
|
72 |
+
"repetition_penalty": repetition_penalty,
|
73 |
+
"streamer": streamer,
|
74 |
+
}
|
75 |
+
|
76 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
77 |
+
thread.start()
|
78 |
+
|
79 |
+
# Stream the response
|
80 |
+
assistant_response = ""
|
81 |
+
new_history = history_state + [
|
82 |
+
{"role": "user", "content": user_message},
|
83 |
+
{"role": "assistant", "content": ""}
|
84 |
+
]
|
85 |
+
for new_token in streamer:
|
86 |
+
cleaned_token = new_token.replace("<|im_start|>", "").replace("<|im_sep|>", "").replace("<|im_end|>", "").replace("<|end|>", "").replace("<|system|>", "").replace("<|user|>", "").replace("<|assistant|>", "")
|
87 |
+
assistant_response += cleaned_token
|
88 |
+
new_history[-1]["content"] = assistant_response.strip()
|
89 |
+
yield new_history, new_history
|
90 |
+
|
91 |
+
yield new_history, new_history
|
92 |
+
|
93 |
+
example_messages = {
|
94 |
+
"Learn about physics": "Explain Newton’s laws of motion.",
|
95 |
+
"Discover space facts": "What are some interesting facts about black holes?",
|
96 |
+
"Write a factorial function": "Write a Python function to calculate the factorial of a number."
|
97 |
+
}
|
98 |
+
|
99 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
100 |
+
gr.Markdown(
|
101 |
+
"""
|
102 |
+
# Phi-4 Chatbot Demo
|
103 |
+
Welcome to the Phi-4 Chatbot Demo! You can chat with Microsoft's Phi-4 or Phi-4-mini-instruct models. Adjust the settings on the left to customize the model's responses.
|
104 |
+
"""
|
105 |
+
)
|
106 |
+
|
107 |
+
history_state = gr.State([])
|
108 |
+
|
109 |
+
with gr.Row():
|
110 |
+
with gr.Column(scale=1):
|
111 |
+
gr.Markdown("### Settings")
|
112 |
+
model_dropdown = gr.Dropdown(
|
113 |
+
choices=["Phi-4", "Phi-4-mini-instruct"],
|
114 |
+
label="Select Model",
|
115 |
+
value="Phi-4"
|
116 |
+
)
|
117 |
+
max_tokens_slider = gr.Slider(
|
118 |
+
minimum=64,
|
119 |
+
maximum=4096,
|
120 |
+
step=50,
|
121 |
+
value=512,
|
122 |
+
label="Max Tokens"
|
123 |
+
)
|
124 |
+
with gr.Accordion("Advanced Settings", open=False):
|
125 |
+
temperature_slider = gr.Slider(
|
126 |
+
minimum=0.1,
|
127 |
+
maximum=2.0,
|
128 |
+
value=1.0,
|
129 |
+
label="Temperature"
|
130 |
+
)
|
131 |
+
top_k_slider = gr.Slider(
|
132 |
+
minimum=1,
|
133 |
+
maximum=100,
|
134 |
+
step=1,
|
135 |
+
value=50,
|
136 |
+
label="Top-k"
|
137 |
+
)
|
138 |
+
top_p_slider = gr.Slider(
|
139 |
+
minimum=0.1,
|
140 |
+
maximum=1.0,
|
141 |
+
value=0.9,
|
142 |
+
label="Top-p"
|
143 |
+
)
|
144 |
+
repetition_penalty_slider = gr.Slider(
|
145 |
+
minimum=1.0,
|
146 |
+
maximum=2.0,
|
147 |
+
value=1.0,
|
148 |
+
label="Repetition Penalty"
|
149 |
+
)
|
150 |
+
|
151 |
+
with gr.Column(scale=4):
|
152 |
+
chatbot = gr.Chatbot(label="Chat", type="messages")
|
153 |
+
with gr.Row():
|
154 |
+
user_input = gr.Textbox(
|
155 |
+
label="Your message",
|
156 |
+
placeholder="Type your message here...",
|
157 |
+
scale=3
|
158 |
+
)
|
159 |
+
submit_button = gr.Button("Send", variant="primary", scale=1)
|
160 |
+
clear_button = gr.Button("Clear", scale=1)
|
161 |
+
gr.Markdown("**Try these examples:**")
|
162 |
+
with gr.Row():
|
163 |
+
example1_button = gr.Button("Learn about physics")
|
164 |
+
example2_button = gr.Button("Discover space facts")
|
165 |
+
example3_button = gr.Button("Write a factorial function")
|
166 |
+
|
167 |
+
submit_button.click(
|
168 |
+
fn=generate_response,
|
169 |
+
inputs=[user_input, model_dropdown, max_tokens_slider, temperature_slider, top_k_slider, top_p_slider, repetition_penalty_slider, history_state],
|
170 |
+
outputs=[chatbot, history_state]
|
171 |
+
).then(
|
172 |
+
fn=lambda: gr.update(value=""),
|
173 |
+
inputs=None,
|
174 |
+
outputs=user_input
|
175 |
+
)
|
176 |
+
|
177 |
+
clear_button.click(
|
178 |
+
fn=lambda: ([], []),
|
179 |
+
inputs=None,
|
180 |
+
outputs=[chatbot, history_state]
|
181 |
+
)
|
182 |
+
|
183 |
+
example1_button.click(
|
184 |
+
fn=lambda: gr.update(value=example_messages["Learn about physics"]),
|
185 |
+
inputs=None,
|
186 |
+
outputs=user_input
|
187 |
+
)
|
188 |
+
example2_button.click(
|
189 |
+
fn=lambda: gr.update(value=example_messages["Discover space facts"]),
|
190 |
+
inputs=None,
|
191 |
+
outputs=user_input
|
192 |
+
)
|
193 |
+
example3_button.click(
|
194 |
+
fn=lambda: gr.update(value=example_messages["Write a factorial function"]),
|
195 |
+
inputs=None,
|
196 |
+
outputs=user_input
|
197 |
+
)
|
198 |
+
|
199 |
+
demo.launch(ssr_mode=False)
|