File size: 2,401 Bytes
7134b38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# PKR Currency Classifier Training Notebook"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import torch.nn as nn\n",
    "import torchvision.transforms as transforms\n",
    "from torchvision import models, datasets\n",
    "from torch.utils.data import DataLoader\n",
    "import os"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load dataset\n",
    "transform = transforms.Compose([\n",
    "    transforms.Resize((224, 224)),\n",
    "    transforms.ToTensor(),\n",
    "    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n",
    "])\n",
    "\n",
    "train_data = datasets.ImageFolder('currency_dataset', transform=transform)\n",
    "train_loader = DataLoader(train_data, batch_size=16, shuffle=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Model\n",
    "weights = models.MobileNet_V2_Weights.DEFAULT\n",
    "model = models.mobilenet_v2(weights=weights)\n",
    "model.classifier[1] = nn.Linear(model.last_channel, 2)\n",
    "criterion = nn.CrossEntropyLoss()\n",
    "optimizer = torch.optim.Adam(model.parameters(), lr=0.001)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Train\n",
    "model.train()\n",
    "for epoch in range(5):\n",
    "    for images, labels in train_loader:\n",
    "        optimizer.zero_grad()\n",
    "        outputs = model(images)\n",
    "        loss = criterion(outputs, labels)\n",
    "        loss.backward()\n",
    "        optimizer.step()\n",
    "    print(f'Epoch {epoch+1}, Loss: {loss.item()}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Save\n",
    "torch.save(model, 'pkr_currency_classifier.pt')"
   ]
  }
 ],
 "metadata": {
  "colab": {
   "name": "training_notebook.ipynb",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "name": "python",
   "version": ""
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}