Spaces:
Running
Running
Upload training_notebook.ipynb
Browse files- training_notebook.ipynb +102 -0
training_notebook.ipynb
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
{
|
3 |
+
"cells": [
|
4 |
+
{
|
5 |
+
"cell_type": "markdown",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# PKR Currency Classifier Training Notebook"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": null,
|
14 |
+
"metadata": {},
|
15 |
+
"outputs": [],
|
16 |
+
"source": [
|
17 |
+
"import torch\n",
|
18 |
+
"import torch.nn as nn\n",
|
19 |
+
"import torchvision.transforms as transforms\n",
|
20 |
+
"from torchvision import models, datasets\n",
|
21 |
+
"from torch.utils.data import DataLoader\n",
|
22 |
+
"import os"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": null,
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"# Load dataset\n",
|
32 |
+
"transform = transforms.Compose([\n",
|
33 |
+
" transforms.Resize((224, 224)),\n",
|
34 |
+
" transforms.ToTensor(),\n",
|
35 |
+
" transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n",
|
36 |
+
"])\n",
|
37 |
+
"\n",
|
38 |
+
"train_data = datasets.ImageFolder('currency_dataset', transform=transform)\n",
|
39 |
+
"train_loader = DataLoader(train_data, batch_size=16, shuffle=True)"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"execution_count": null,
|
45 |
+
"metadata": {},
|
46 |
+
"outputs": [],
|
47 |
+
"source": [
|
48 |
+
"# Model\n",
|
49 |
+
"weights = models.MobileNet_V2_Weights.DEFAULT\n",
|
50 |
+
"model = models.mobilenet_v2(weights=weights)\n",
|
51 |
+
"model.classifier[1] = nn.Linear(model.last_channel, 2)\n",
|
52 |
+
"criterion = nn.CrossEntropyLoss()\n",
|
53 |
+
"optimizer = torch.optim.Adam(model.parameters(), lr=0.001)"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"cell_type": "code",
|
58 |
+
"execution_count": null,
|
59 |
+
"metadata": {},
|
60 |
+
"outputs": [],
|
61 |
+
"source": [
|
62 |
+
"# Train\n",
|
63 |
+
"model.train()\n",
|
64 |
+
"for epoch in range(5):\n",
|
65 |
+
" for images, labels in train_loader:\n",
|
66 |
+
" optimizer.zero_grad()\n",
|
67 |
+
" outputs = model(images)\n",
|
68 |
+
" loss = criterion(outputs, labels)\n",
|
69 |
+
" loss.backward()\n",
|
70 |
+
" optimizer.step()\n",
|
71 |
+
" print(f'Epoch {epoch+1}, Loss: {loss.item()}')"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "code",
|
76 |
+
"execution_count": null,
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [],
|
79 |
+
"source": [
|
80 |
+
"# Save\n",
|
81 |
+
"torch.save(model, 'pkr_currency_classifier.pt')"
|
82 |
+
]
|
83 |
+
}
|
84 |
+
],
|
85 |
+
"metadata": {
|
86 |
+
"colab": {
|
87 |
+
"name": "training_notebook.ipynb",
|
88 |
+
"provenance": []
|
89 |
+
},
|
90 |
+
"kernelspec": {
|
91 |
+
"display_name": "Python 3",
|
92 |
+
"language": "python",
|
93 |
+
"name": "python3"
|
94 |
+
},
|
95 |
+
"language_info": {
|
96 |
+
"name": "python",
|
97 |
+
"version": ""
|
98 |
+
}
|
99 |
+
},
|
100 |
+
"nbformat": 4,
|
101 |
+
"nbformat_minor": 0
|
102 |
+
}
|