Delete model
Browse files
model
DELETED
@@ -1,52 +0,0 @@
|
|
1 |
-
# model/anime_gan.py
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
class ConvLayer(nn.Module):
|
5 |
-
def __init__(self, in_channels, out_channels, kernel_size, stride):
|
6 |
-
super(ConvLayer, self).__init__()
|
7 |
-
reflection_padding = kernel_size // 2
|
8 |
-
self.layer = nn.Sequential(
|
9 |
-
nn.ReflectionPad2d(reflection_padding),
|
10 |
-
nn.Conv2d(in_channels, out_channels, kernel_size, stride),
|
11 |
-
nn.InstanceNorm2d(out_channels, affine=True),
|
12 |
-
nn.ReLU()
|
13 |
-
)
|
14 |
-
|
15 |
-
def forward(self, x):
|
16 |
-
return self.layer(x)
|
17 |
-
|
18 |
-
class ResidualBlock(nn.Module):
|
19 |
-
def __init__(self, channels):
|
20 |
-
super(ResidualBlock, self).__init__()
|
21 |
-
self.block = nn.Sequential(
|
22 |
-
ConvLayer(channels, channels, 3, 1),
|
23 |
-
ConvLayer(channels, channels, 3, 1)
|
24 |
-
)
|
25 |
-
|
26 |
-
def forward(self, x):
|
27 |
-
return x + self.block(x)
|
28 |
-
|
29 |
-
class Generator(nn.Module):
|
30 |
-
def __init__(self):
|
31 |
-
super(Generator, self).__init__()
|
32 |
-
self.encoder = nn.Sequential(
|
33 |
-
ConvLayer(3, 32, 7, 1),
|
34 |
-
ConvLayer(32, 64, 3, 2),
|
35 |
-
ConvLayer(64, 128, 3, 2),
|
36 |
-
)
|
37 |
-
self.res_blocks = nn.Sequential(*[ResidualBlock(128) for _ in range(5)])
|
38 |
-
self.decoder = nn.Sequential(
|
39 |
-
nn.Upsample(scale_factor=2),
|
40 |
-
ConvLayer(128, 64, 3, 1),
|
41 |
-
nn.Upsample(scale_factor=2),
|
42 |
-
ConvLayer(64, 32, 3, 1),
|
43 |
-
nn.ReflectionPad2d(3),
|
44 |
-
nn.Conv2d(32, 3, 7, 1),
|
45 |
-
nn.Tanh()
|
46 |
-
)
|
47 |
-
|
48 |
-
def forward(self, x):
|
49 |
-
x = self.encoder(x)
|
50 |
-
x = self.res_blocks(x)
|
51 |
-
x = self.decoder(x)
|
52 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|