Update app.py
Browse files
app.py
CHANGED
@@ -4,11 +4,63 @@ import torch
|
|
4 |
from torchvision import transforms
|
5 |
import os
|
6 |
import torchvision.transforms.functional as TF
|
7 |
-
|
8 |
|
9 |
st.set_page_config(page_title="Ghibli Style Converter", layout="centered")
|
10 |
|
11 |
@st.cache_resource
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def load_model():
|
13 |
model = Generator()
|
14 |
model.load_state_dict(torch.load("model/miyazaki_hayao.pth", map_location="cpu"))
|
|
|
4 |
from torchvision import transforms
|
5 |
import os
|
6 |
import torchvision.transforms.functional as TF
|
7 |
+
|
8 |
|
9 |
st.set_page_config(page_title="Ghibli Style Converter", layout="centered")
|
10 |
|
11 |
@st.cache_resource
|
12 |
+
import torch.nn as nn
|
13 |
+
|
14 |
+
class ConvLayer(nn.Module):
|
15 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride):
|
16 |
+
super(ConvLayer, self).__init__()
|
17 |
+
reflection_padding = kernel_size // 2
|
18 |
+
self.layer = nn.Sequential(
|
19 |
+
nn.ReflectionPad2d(reflection_padding),
|
20 |
+
nn.Conv2d(in_channels, out_channels, kernel_size, stride),
|
21 |
+
nn.InstanceNorm2d(out_channels, affine=True),
|
22 |
+
nn.ReLU()
|
23 |
+
)
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
return self.layer(x)
|
27 |
+
|
28 |
+
class ResidualBlock(nn.Module):
|
29 |
+
def __init__(self, channels):
|
30 |
+
super(ResidualBlock, self).__init__()
|
31 |
+
self.block = nn.Sequential(
|
32 |
+
ConvLayer(channels, channels, 3, 1),
|
33 |
+
ConvLayer(channels, channels, 3, 1)
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
return x + self.block(x)
|
38 |
+
|
39 |
+
class Generator(nn.Module):
|
40 |
+
def __init__(self):
|
41 |
+
super(Generator, self).__init__()
|
42 |
+
self.encoder = nn.Sequential(
|
43 |
+
ConvLayer(3, 32, 7, 1),
|
44 |
+
ConvLayer(32, 64, 3, 2),
|
45 |
+
ConvLayer(64, 128, 3, 2),
|
46 |
+
)
|
47 |
+
self.res_blocks = nn.Sequential(*[ResidualBlock(128) for _ in range(5)])
|
48 |
+
self.decoder = nn.Sequential(
|
49 |
+
nn.Upsample(scale_factor=2),
|
50 |
+
ConvLayer(128, 64, 3, 1),
|
51 |
+
nn.Upsample(scale_factor=2),
|
52 |
+
ConvLayer(64, 32, 3, 1),
|
53 |
+
nn.ReflectionPad2d(3),
|
54 |
+
nn.Conv2d(32, 3, 7, 1),
|
55 |
+
nn.Tanh()
|
56 |
+
)
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
x = self.encoder(x)
|
60 |
+
x = self.res_blocks(x)
|
61 |
+
x = self.decoder(x)
|
62 |
+
return x
|
63 |
+
|
64 |
def load_model():
|
65 |
model = Generator()
|
66 |
model.load_state_dict(torch.load("model/miyazaki_hayao.pth", map_location="cpu"))
|