meraj12 commited on
Commit
91e79b6
·
verified ·
1 Parent(s): e5e74fa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -1
app.py CHANGED
@@ -4,11 +4,63 @@ import torch
4
  from torchvision import transforms
5
  import os
6
  import torchvision.transforms.functional as TF
7
- from model.anime_gan import Generator
8
 
9
  st.set_page_config(page_title="Ghibli Style Converter", layout="centered")
10
 
11
  @st.cache_resource
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  def load_model():
13
  model = Generator()
14
  model.load_state_dict(torch.load("model/miyazaki_hayao.pth", map_location="cpu"))
 
4
  from torchvision import transforms
5
  import os
6
  import torchvision.transforms.functional as TF
7
+
8
 
9
  st.set_page_config(page_title="Ghibli Style Converter", layout="centered")
10
 
11
  @st.cache_resource
12
+ import torch.nn as nn
13
+
14
+ class ConvLayer(nn.Module):
15
+ def __init__(self, in_channels, out_channels, kernel_size, stride):
16
+ super(ConvLayer, self).__init__()
17
+ reflection_padding = kernel_size // 2
18
+ self.layer = nn.Sequential(
19
+ nn.ReflectionPad2d(reflection_padding),
20
+ nn.Conv2d(in_channels, out_channels, kernel_size, stride),
21
+ nn.InstanceNorm2d(out_channels, affine=True),
22
+ nn.ReLU()
23
+ )
24
+
25
+ def forward(self, x):
26
+ return self.layer(x)
27
+
28
+ class ResidualBlock(nn.Module):
29
+ def __init__(self, channels):
30
+ super(ResidualBlock, self).__init__()
31
+ self.block = nn.Sequential(
32
+ ConvLayer(channels, channels, 3, 1),
33
+ ConvLayer(channels, channels, 3, 1)
34
+ )
35
+
36
+ def forward(self, x):
37
+ return x + self.block(x)
38
+
39
+ class Generator(nn.Module):
40
+ def __init__(self):
41
+ super(Generator, self).__init__()
42
+ self.encoder = nn.Sequential(
43
+ ConvLayer(3, 32, 7, 1),
44
+ ConvLayer(32, 64, 3, 2),
45
+ ConvLayer(64, 128, 3, 2),
46
+ )
47
+ self.res_blocks = nn.Sequential(*[ResidualBlock(128) for _ in range(5)])
48
+ self.decoder = nn.Sequential(
49
+ nn.Upsample(scale_factor=2),
50
+ ConvLayer(128, 64, 3, 1),
51
+ nn.Upsample(scale_factor=2),
52
+ ConvLayer(64, 32, 3, 1),
53
+ nn.ReflectionPad2d(3),
54
+ nn.Conv2d(32, 3, 7, 1),
55
+ nn.Tanh()
56
+ )
57
+
58
+ def forward(self, x):
59
+ x = self.encoder(x)
60
+ x = self.res_blocks(x)
61
+ x = self.decoder(x)
62
+ return x
63
+
64
  def load_model():
65
  model = Generator()
66
  model.load_state_dict(torch.load("model/miyazaki_hayao.pth", map_location="cpu"))