Spaces:
Sleeping
Sleeping
import os | |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache" | |
from flask import Flask, request, jsonify | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
import torch | |
app = Flask(__name__) | |
# ✅ Modeli ve tokenizer'ı direkt Hugging Face'ten yüklüyoruz | |
model_name = "memorease/memorease-flan-t5" | |
print("[Startup] Loading model...") | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
print("[Startup] Model loaded.") | |
def ask_question(): | |
try: | |
input_text = request.json.get("text") | |
if not input_text: | |
return jsonify({"error": "Missing 'text'"}), 400 | |
# Prompt oluştur | |
prompt = f"Only generate a factual and relevant question about this memory: {input_text}" | |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True) | |
# Inference | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, max_new_tokens=64) | |
question = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return jsonify({"question": question}) | |
except Exception as e: | |
return jsonify({"error": str(e)}), 500 | |
def healthcheck(): | |
return jsonify({"status": "running"}) | |
if __name__ == "__main__": | |
app.run(host="0.0.0.0", port=7860) | |