import os os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache" from flask import Flask, request, jsonify from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import torch app = Flask(__name__) # ✅ Modeli ve tokenizer'ı direkt Hugging Face'ten yüklüyoruz model_name = "memorease/memorease-flan-t5" print("[Startup] Loading model...") tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) print("[Startup] Model loaded.") @app.route("/ask", methods=["POST"]) def ask_question(): try: input_text = request.json.get("text") if not input_text: return jsonify({"error": "Missing 'text'"}), 400 # Prompt oluştur prompt = f"Only generate a factual and relevant question about this memory: {input_text}" inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True) # Inference with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=64) question = tokenizer.decode(outputs[0], skip_special_tokens=True) return jsonify({"question": question}) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route("/", methods=["GET"]) def healthcheck(): return jsonify({"status": "running"}) if __name__ == "__main__": app.run(host="0.0.0.0", port=7860)