memex-in's picture
Create app.py
6e7e9c9 verified
import streamlit as st
import torch
from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor
# Load the model and processor
model = Qwen2_5OmniForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-Omni-7B", torch_dtype="auto", device_map="auto")
processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B")
# Streamlit app title
st.title("Cryptocurrency Price Prediction")
# User input for cryptocurrency and time frame
crypto = st.text_input("Enter Cryptocurrency (e.g., Bitcoin, Ethereum):")
time_frame = st.selectbox("Select Time Frame:", ["1 Hour", "1 Day", "1 Week", "1 Month"])
# Button to predict price
if st.button("Predict Price"):
if crypto:
# Prepare input for the model
input_text = f"Predict the price of {crypto} for the next {time_frame}."
inputs = processor(input_text, return_tensors="pt", padding=True).to(model.device)
# Generate prediction
with torch.no_grad():
output = model.generate(**inputs)
# Decode the output
prediction = processor.batch_decode(output, skip_special_tokens=True)[0]
# Display the prediction
st.success(f"The predicted price of {crypto} for the next {time_frame} is: {prediction}")
else:
st.error("Please enter a cryptocurrency name.")