Spaces:
Running
Running
import streamlit as st | |
import torch | |
from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor | |
# Load the model and processor | |
model = Qwen2_5OmniForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-Omni-7B", torch_dtype="auto", device_map="auto") | |
processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B") | |
# Streamlit app title | |
st.title("Cryptocurrency Price Prediction") | |
# User input for cryptocurrency and time frame | |
crypto = st.text_input("Enter Cryptocurrency (e.g., Bitcoin, Ethereum):") | |
time_frame = st.selectbox("Select Time Frame:", ["1 Hour", "1 Day", "1 Week", "1 Month"]) | |
# Button to predict price | |
if st.button("Predict Price"): | |
if crypto: | |
# Prepare input for the model | |
input_text = f"Predict the price of {crypto} for the next {time_frame}." | |
inputs = processor(input_text, return_tensors="pt", padding=True).to(model.device) | |
# Generate prediction | |
with torch.no_grad(): | |
output = model.generate(**inputs) | |
# Decode the output | |
prediction = processor.batch_decode(output, skip_special_tokens=True)[0] | |
# Display the prediction | |
st.success(f"The predicted price of {crypto} for the next {time_frame} is: {prediction}") | |
else: | |
st.error("Please enter a cryptocurrency name.") |