import streamlit as st import torch from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor # Load the model and processor model = Qwen2_5OmniForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-Omni-7B", torch_dtype="auto", device_map="auto") processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B") # Streamlit app title st.title("Cryptocurrency Price Prediction") # User input for cryptocurrency and time frame crypto = st.text_input("Enter Cryptocurrency (e.g., Bitcoin, Ethereum):") time_frame = st.selectbox("Select Time Frame:", ["1 Hour", "1 Day", "1 Week", "1 Month"]) # Button to predict price if st.button("Predict Price"): if crypto: # Prepare input for the model input_text = f"Predict the price of {crypto} for the next {time_frame}." inputs = processor(input_text, return_tensors="pt", padding=True).to(model.device) # Generate prediction with torch.no_grad(): output = model.generate(**inputs) # Decode the output prediction = processor.batch_decode(output, skip_special_tokens=True)[0] # Display the prediction st.success(f"The predicted price of {crypto} for the next {time_frame} is: {prediction}") else: st.error("Please enter a cryptocurrency name.")